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1 Introduction

As the name of this deliverable suggest, the scope is to provide an outline of the GEM Demonstration phase.
During this phase, all 5 GEM use cases were continuously running on the selected DEMO areas. The document
provides an overview of the results collected in the selected DEMO areas, also visible via dedicated viewer
and/or client applications, preliminary conclusions, list of public collections representing results from the
demonstrations, and a dedicate section describing the Continuous Monitoring Service implemented by
Sinergise. The D5.8 Validation Report will summarize all the findings from the Demonstration period.

As previously mentioned, the GEM project has one generic use case, namely, the Land Cover Continuous
Monitoring Service (LC CMS) and 4 specific ones which are its derivatives i.e., the Map Making, Conflict Pre-
Warning, Crop-Detection and Built-Up area identification use case.

In Built-Up use case we have used GEM platform (eo-learn and eo-grow) to establish a process that can identify
new urban areas at large scale on quarterly or even monthly basis. We experimented on the area of Slovenia
and France, where high quality reference data provided the means to understand the issues of using low
resolution inputs. We have relied on ground truth data provided by TomTom for the purposes of GEM project
and based our experiments and analysis on expertise from TomTom (LULC classification) and TUM (ML models)
gathered through bi-lateral collaborations and meetings. We have also created the 120 m resolution global
cloudless mosaic Analysis Ready Data cube specifically with cost-optimised large-scale monitoring in mind.

We developed a process, which can (on an ongoing basis) produce information about new built-up areas on
Sentinel-2 120 m mosaic. To detect built-up areas, we tried several approaches: classifying all the land cover
classes within GEM taxonomy, binary classification and finally predicting the fraction of pixel that is considered
built-up via regression.

The process heavily relies on eo-learn, which is upgraded with the eo-grow framework for scalability.
Computations can be done on remote clusters and scalability was tested by producing the results for the whole
of Africa. Thanks to the 120 m resolution the process is fast and cheap, making it a perfect demonstrator of
how to run large scale EO data pipelines and workflows.

The goal of the LC-CMS use case is to perform fully automated, efficient, and repeatable global Land Cover
mapping for small and mid-scale features. It is a generic GEM use case which shows global Continuous
Monitoring capabilities of the GEM project. During the Construction phase, we first used an area of interest
(AQI) covering France to performs experiments, and predictions at different resolutions, namely at 120 m, 60
m and 20 m by using quarterly composites for the year 2020. As the predictions at a resolution of 120 m are
cheaper to produce, we used Sentinel-2 at 120 m to perform change detection by tracking the changes
happening on the land surface for all the land classes over time which can be used for continuous land
monitoring and evolution. We finally validated and demonstrated the results over the demonstration Sahara
region of Africa.

The objective of the Map Making use case is to create “map-ready” features derived from some upstream
process and enrich TomTom’s core map feature set by ingesting those features. To achieve this objective, a
dedicated pipeline based on LC-CMS pipeline was built, capable of detecting water features. The pipeline was
used to perform water features/extraction on several areas, based on the internal TomTom use case. The
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results have been tested in the region of Myanmar and demonstrated in several country-size region, included
parts of Chile.

The Crop Identification use case demo allows users to inspect the best result we could achieve by combining
crop and weather data. Learnings during the projects had us supersede this use case with weather and climate
services, use cases, and demonstrators as shown in Table 1.1.

Table 1.1 Services and use cases superseding the Crop Identification use case

Demonstration Application  Enabling Service Deliverable Work
Section Package

Crop Identification ML workflows 4.4 WP5

City Heat Maps on Hyper-resolution (10 m) live 45 WP2, WPS5,

meteoblue.com website temperature data in built-up areas ' WP6
Climate variables and climate indices

Jupyter Notebook _ 4.6 WP2, WP6
on grids

Measurement Interface

) Measurement data management 4.7 WP2
(meteoblue internal)

The goal of the Conflict Pre-Warning Map use case is to merge multiple data sources to bring relevant
information for addressing climate-security issues. The demonstration focuses on supporting the geospatial
intelligence production across different phases. In order to do that, the demo supports three steps. In a first
step, wide subcontinental (Sahel area) automated continuous monitoring at coarse resolution is implemented.
When more details are needed (e.g., request from decision makers), a second step provides semi-automatic
approaches to provide GEOINT analysts with standardized sets of data (across different dimensions) and ad-
hoc procedures or analyses are used to gain situational awareness at medium-high resolution. Niger is
monitored at this level in the demonstration. Finally, on a third step, finer resolution data is used to perform
ad-hoc analyses, which support the generation of change maps, impact assessments or contingency plans.
Three small AOIs are selected for the demo.

The rest of this deliverable report is structured as follows:

Section 2 for each GEM use case, the Demonstration section provides a description of the experiments
performed in the DEMO area.

Section 3 describes how to employ the Continuous Monitoring service through the GEM Framework.

Section 4 shows the dedicated clients/demonstrator developed to visualize, compare, and validate results for
each GEM use case.

Section 5 lists all publicly available Collection used in the Demonstration phase.

In Section 6 we conclude the deliverable with an outline of the preliminary results.
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2 Demonstration Use Case

The current section provides an overview of the scope area used in the Demonstration phase for each use
case.

2.1 LC-CMS

The below section provides a summary of the experiments performed for the LC-CMS on the selected DEMO
area, the full contents is available in section 7 of D5.3 LC-CMS deliverable.

2.1.1 Overview

The goal of the LC-CMS use case is to perform fully automated, efficient, and repeatable global Land Cover
(LC) mapping for small and mid-scale features. It is a generic GEM use case which shows global Continuous
Monitoring capabilities of the GEM project. LC-CMS use case is of special interest to TomTom as it provides a
more efficient, scalable, and maintainable alternative to the previous TomTom LC production pipeline (Earth
Cover Engine) based on the capabilities of eo-learn.

To achieve this objective, an end-to-end machine learning based pipeline was built, capable of detecting Level
2 land classes of GEM Taxonomy using mid and low-resolution Sentinel-2 spectral bands. The pipeline was
developed using eo-grow and eo-learn frameworks (GEM processing framework) developed by Sinergise. eo-
grow allows to easily scale-up and distribute the workload. The LC-CMS pipeline is described in detail within
the section 4 of D5.3 LC-CMS deliverable.

The pipeline was used to perform various experiments on the Sentinel-2 bands at different spatial resolutions,
ranging from 120 m to 10 m per pixel. Following the lessons learned from TomTom's Earth Cover Engine, we
used a LGBM Random Forest Classifier model to perform land pixel classification using a combination of
temporal Sentinel 2 bands as input features. The training data was obtained by manually labelling pixels, for
different Level 2 classes in GEM Taxonomy, for the region of France for the year of 2020.

We first used an area of interest (AOI) covering France and performed predictions at 120 m, 60 m and 20 m
by using quarterly composites for the year 2020. As the predictions at a resolution of 120 m are cheaper to
produce, we used Sentinel-2 at 120 m to perform change detection by tracking the changes happening on the
land surface for all the land classes over time which can be used for continuous land monitoring and evolution.
Together with the Drill Down mechanism the process becomes very cost efficient, globally repeatable, and
scalable as it keeps track of only the changes over time at lower resolution and performs predictions on higher
resolution imagery only if the change is worth following. We looked at different approaches of change
detection and demonstrate the results over France and Sahara region of Africa.

2.1.2 Scope Area

As part of demonstration, we choose the sub-Saharan region in Africa, as shown in Figure 1.
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Figure 1: Pilot AOIs and the experiment AOlIs

2.1.3 Model Type & Parameters

The LC-CMS pipeline described in section 4 LC-CMS Architecture of D5.3 LC-CMS deliverable was used to
perform all the experiments. For each year we used Sentinel-2 L2A data at 120m resolution, and TomTom
Ground-Truth reference data to train a model which was predicting pixel-based occurrence of LC classes using
LGBM Random Forest.

We first decided to use a single model for the whole AOI of Africa. However, we found that using a single
model for the entire area resulted in poor model performance and visible artifacts in the predictions. Also,
there were a lot of misclassifications like sea pixels classified as bare soil. Because of the sheer size of the AQI,
there's a lot of diversity in the landscapes and the biomes and the features across landscapes are not
consistent. For example, two same land class pixels belonging to regions that are far apart in different biomes
might have very different values. This limits the model's ability to generalize well. Additionally, there are many
satellite swath artifacts that are clearly visible in the overlapping regions of the satellite orbits of S2.

To improve the accuracy of our predictions, we then used multiple models, each trained on a smaller AOI with
more consistent characteristics. This allowed the models to generalize better and produce more accurate
predictions. There are some new artifacts like sharp change in the prediction class at the region boundaries,
but such artifacts can be easily mitigated by capturing more training data at region boundaries.

The Figure 2 shows the pilot region in Africa split in four different sub-regions i.e., AQOls.
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Figure 2: Demonstrator AOls

A comparison of 2019 predictions using a single AQOI and four smaller AQls is shown in Figure 3. The results are
more consistent and appear to be more accurate when compared with EC satellite imagery, and the satellite
swath artifacts are also greatly reduced.
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Figure 3 : Overall predictions for LC-CMS pipeline for 2020.



({Q Global Earth Monitor

2.1.4 Input Data

For the LC-CMS pipeline we mainly used Sentinel-2 bands at different spatial resolutions, ranging from 120 m
to 10 m per pixel, and the TomTom Ground Truth data. We also performed predictions with and without
weather data, for which we concluded that the weather data doesn't contribute to improving predictions at
120m, rather it creates some unexpected artifacts and misclassifications in many regions.

In order to continually run model at low resolution at global scale, Data Cubes (DCs) have been generated by
Sinergise. Table 2.1 shows the description of two static DCs that were created using Data Cube processing
engine (see deliverable D3.3 — GEM processing Framework for details about Data Cube engine) and eo-grow
for the Pilot Region in Africa, one for Sentinel-2 Level-2A data and the second for weather data.

The weather data was retrieved from meteoblue services and contains 9 meteorological parameters:
CLOUD_COVER_TOTAL, PRESSURE, SUN_DURATION, VAPOR_PRESSURE_DEFICIT, WIND, HUMIDITY,
TEMPERATURE, SOIL_MOISTURE and PRECIPITATION. The data was aggregated on monthly basis with 25th
guantile for Sentinel-2 data and mean aggregation for the weather data. The creation of the data cube made
it very easy to iterate over the experiments for various use cases since the data aggregation was already
completed.

Both DCs are now available through Sentinel-Hub services, and a Jupyter notebook illustrating how to use the
static data cubes has been added to eo-learn-examples repository: https://github.com/sentinel-hub/eo-learn-

examples/blob/main/GEM-data/gem-collections.ipynb

Table 2.1 Data cubes available in collections and used for experiments and demonstration

Data Temporal Temporal Spatial Resampling Availability
Source Agg. Agg. Res.
Sentinel-2 BO1, BO2, BO3, BO4, BO5, Monthly 25t Bilinear
BO6, BO7, BOS, B8A, BO9, Quartile 5019, 2020
B11, B12 ’ ’
2021
120 m —
meteoblue | CLOUD_COVER_TOTAL, Monthly Mean Bilinear
weather PRESSURE,
data SUN_DURATION,

VAPOR_PRESSURE_DEFICIT,
WIND, HUMIDITY,
TEMPERATURE,
SOIL_MOISTURE,
PRECIPITATION

2.1.5 Prediction Results

The purpose of the demonstration was to showcase the capabilities of the LC-CMS (Land Cover Classification
Modelling System) pipeline to run on a global scale in a repeated manner. To achieve this, the LC-CMS pipeline
was run for three consecutive years, 2019, 2020, and 2021, at 120 m resolution.



resolution of 120 m and demonstrated for the pilot region. The initial results show that it is feasible to detect
changes using this approach however, there’s a lot of noise in the detected changes. We have identified
several areas for improvement that we can pursue in future work.

"o
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We also performed a different Change Detection approach by comparing the predicted results at lower
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The final results of LC Prediction and Change Detection using diff of predictions for years 2019, 2020, and
2021 are available on the LC-CMS Map Viewer available at:
http://globalearthmonitor.eu/sites/default/files/LC_CMS/index.html

2.1.5.1 LC-CMS Prediction

Initial results immediately show that the quality of predictions was reasonable, particularly at such resolution.
Figure 4 shows model validation results for all the AQOIs for the year 2019. The predictions can capture the
global landscape trends in the sub-regions. The model particularly struggled to classify forests correctly and
often misclassifying them as bare soil or grass. Overall, the results indicate that the model performs well on
distinct classes like water, built-up etc. but struggles with classes that are easily confused with each other like
forest, grass, bare soil, farmland. Overall, the mean accuracy of the results was around 0.81, 0.806 and 0.76
for 2019, 2020, 2021 respectively. A summary of the results can be found in Table 2.2.

The results of predictions can be visualized by selecting the layers LCMS Pilot 120m 2019, LCMS Pilot 120m

2020, LCMS Pilot 120m 2021 in the demonstrator app mentioned in section 4.1.

Table 2.2 Summary of results for LC-CMS models for years 2019, 2020, 2021

Year

Mean
Accuracy

F1
Macro

F1
Weighed

AOI 2 + AOI 4
2019 2020 2021 2019 2020 2021 2019 2020 2021
0.86 0.89 0.84 0.8 0.82 0.77 0.71 0.71 0.69
0.44 0.46 0.42 0.53 0.55 0.53 0.56 0.57 0.53
0.89 091 0.88 0.83 0.85 0.81 0.72 0.72 0.69
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Figure 4: Model validation results for 2019 at 120m for all the AOls

2.1.5.2 Change Detection

The section 6 of D5.3 LC-CMS describes experiments performed on Change Detection. We performed a basic
change detection by comparing the predicted land cover classes over the years at lower resolution of 120 m
and demonstrated for the DEMO area. This allowed us to detect changes in land cover for every pixel.

The initial results show that it is feasible to detect changes using this approach however, there’s a lot of noise
in the detected changes. We have identified several areas for improvement that we can pursue in future work.
For example, we can try to filter the noise in the change detection, we can try to increase the quality of
predictions of the LC-CMS model, experiment with different kernel sizes for sieving before change detection,
create class-specific models for change detection, and investigate the use of higher-resolution imagery for
improved quality of predictions.
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Table 2.3 shows some examples of the changes detected by the model, overlaid on reference imagery from
satellite imagery for the same time period along with the location and description of the change. It should be
noted that the satellite imagery is used as a reference and is not considered to be ground truth. This is because
it only shows a snapshot of the year, while our model uses S2 imagery which also captures seasonality.

The results of change can be visualized by selecting the layers LCMS Change 2019-2020, LCMS Change 2020-
2021, LCMS Change 2019-2021 in the demonstrator app mentioned in section 4.1.

2.1.6 Costs

The pipeline was run on four sub-regions in the pilot region for the years 2019, 2020, and 2021 for the static
DCs. Thanks to the availability of static DCs, which allowed quick iteration over results. The pipeline was run
on AWS Cloud using 5 m5.xlarge instances with distributed workload via ray clusters, and the whole process
took less than half a day to run. The total AWS cost for processing and saving the data for 3 years of data on
Amazon S3 bucket (excluding Sentinel-Hub costs), including the Ground-truth data on AWS RDS instance, was
less than 600,00 S.

The pilot area is roughly 8.5 million squares kilometres, which is around 7% of global land coverage. If we
extrapolate the cost to the entire global land coverage, the cost for three years would be around 8571,00 S.
Running LC-CMS globally for one year at 120m resolution should cost around $3000,00. It is to be noted that
these are rough estimates based on the modelling process used, and for an input resolution of 120m. The cost
significantly varies depending on the modelling technique and the input data resolution used (e.g., using higher
resolution and using deep learning models will increase the costs). Additionally, these estimates do not include
the manual capturing training data, which it is a significant cost.

10



Global Earth Monitor

Table 2.3 Examples of Change detection tracking the difference between of predictions in 2019, 2020, 2020

Description of
detected
change

Change Detection
(Diff of predictions)

Satellite Imagery 2019 Satellite Imagery 2021

Reservoir Souapiti in
Guinea can be seen to
increase in size clearly

in the satellite imagery.

Around Nioro & Kayes
region in Mali region, a
lot of bare soil and
vegetation is detected

which is in
¥ correspondence with
the changes in imagery.

11
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Northern basin of Lake
Volta in Ghana seems
to have increased in
basin and there is a lot
of farmland detected,
some of it is noise.

Built up, bare soil &
farmland detected in
Bamako City in Mali are
visible in imagery; city’s
annual population is

12
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Divo city in Cote
D'lvoire shows built up
increase and is
detected in imagery.

Yamoussoukro and
neighbouring areas in
Cote D'lvoire show a
lot of built-up growth
in imagery and is
detected by LC-CMS.

Western parts of Cote
D'lvoire shows built-
up, and farmland
increase and is
consistent with the
imagery

13




Near Mopti town in
Mali, dried up
waterways results in
detection of farmland,
grass, change from
permanent to
intermittent water
with some noise.

Lake Mbakaou
showing change of
permanent water
changing to
intermittent and forest
between 2019 & 2020.

14
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2.2 Map Making Demonstration

The below section provides a summary of the experiments performed for the Map Making use case on the
selected DEMO area.

2.2.1 Overview

The objective of the Map Making use case is to create “map-ready” features derived from some upstream
process and enrich TomTom’s core map feature set by ingesting those features. In addition to generating
"map-ready"” land cover (LC) features for updating and visually improving TomTom’s Core Map, extraction
performed at 10 m resolution—although sometimes insufficient for creating features at the highest zoom
levels—can still be utilized to identify locations where existing features may have changed and maps should
be updated. Upon detecting such alterations, these leads can be supplied to editors for updating the product,
accordingly, utilizing GEM's drill-down capabilities.

To achieve this objective, a dedicated pipeline based on LC-CMS pipeline was built, capable of detecting water
features. The pipeline was used to perform water features/extraction on several areas, based on the internal
TomTom use case. The results have been demonstrated in the region of Myanmar and parts of Chile. Myanmar
was also used for experimentation, finalizing input bands, and evaluating post-processing and vectorization
techniques. So, the viewer may have more layers for Myanmar than Chile Subregion.

2.2.2 Scope Area

As part of demonstration phase, several Area of Interest (AOI) e.g., countries, have been chosen. The table
below provides a summary of all AOl and parameters linked to that.

Table 2.4 Demonstration Area

Country Area | AOl Area |Type Resolution (m) | Prediction Year
(Km2) (Km2)
Chile 758.556 2.269.410 Demonstration | 10 2019, 2019, 2019, 2019, 2019
Taiwan 36.785 417.111 |Demonstration| 10 2019
South Korea 100.672 578.760 |Demonstration| 10 2019
Uruguay 193.200 600.320 |Demonstration| 10 2019
Eastern Turkey 337.689 337.689 |Demonstration| 10 2019-2022

Iraq & Siria 406.128 384.641 |Demonstration| 10, 60, 120 2019-2022

15
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Myanmar

67.958

1.181.894

Testing

10, 20, 60

2019-2020

The Figure 2: Demonstrator AOIls, shows on map the area selected for the demonstration. Preliminary

experiments have been performed, as part of D5.3, for Myanmar and small areas in Chile. The experiments

allowed to select the model type and parameters for the final demonstration.

2.2.3 Model Type & Parameters

Figure 5: Overview of the Map Making AOI.

A part of D5.3 section 4, several tests have been performed to select the model type and parameters. Based
on the analysis, we concluded that the Gradient Boosted Decision Trees (GBDT) model with balanced class
weight performs better than the Random Forest (RF) model at predicting water.

In addition, the following parameters were used:

e Metric = multi-log loss

16
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e (lass weight = balanced

e The following three parameters are aimed at speeding up model training and avoiding overfitting.
o Bragging frequency =1
o Bagging fraction = 0.625

o Feature fraction =0.625

We then conducted feature attribution analysis using only GBDT. For the experiments the following input data
was considered while selecting and engineering features for Water detection:

e Sentinel 2 L2A 12 Bands!: BO1, B02, BO3, B04, BO5, BO6, BO7, BO8, B8A, B11 & B12 downloaded using
BatchAPI

e Resolution: 10m

e Duration: 1 Year (2020)

e Aggregation: Bi-monthly using 25th Quartile resulting in 6 temporal measurements
ML Model: LightGBM GBDT Classifier for pixel-wise classification.
Performance Measure: We primarily use F1 score and ROC AUC for choosing the model.

Test Region: Scope region of Myanmar shown in Figure 1 was used for this exercise.

Table 2.5 highlights the final seven remaining bands, including the NDWI index, that we retained for the Water
Prediction task. This resulted in a total of 42 features, as opposed to the initial 72 features.

Table 2.5 Final selected Sentinel-2 Bands for Training using SHAPley analysis.

BO1 60m Ultra-Blue & important features according to SHAP

BO4 10m Red is helpful in detecting longer wavelength in visible spectrum
BO5 20m NIR & important feature according to SHAP

BO9 60m Water vapour, important according to SHAP

B11 20m SWIR & important feature according to SHAP

1 Sentinel2 L2A Bands in SentinelHub: https://docs.sentinel-hub.com/api/latest/data/sentinel-2-12a/
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B12 20m SWIR & important feature according to SHAP
BO2 10m Blue weight to avoid loss of native resolution at 10m
NDWI 10m Normalized Difference Water Index

Calculated as (BO3 — B08)/ (BO3 + BO8)

2.2.4 Input Data

For the Map Making pipeline, we mainly used Sentinel-2 bands at different spatial resolutions, ranging from
120 m to 10 m per pixel, and the TomTom Ground Truth data. In summary:

e Sentinel-2 bands at 10 m resolution were used for training.

e Data used varies for each AOI, the selected years are shown in Table 2.4. The measurements for the
whole year were aggregated bi-monthly, resulting in a total of 6 temporal measurements.

e Onlyaselect number of bands and indices, as mentioned in Table 2.5 derived after feature engineering
were used for training the model.

2.2.5 Prediction Results

2.2.5.1 Water Predictions

Table 2.6 shows the Classification Report, Confusion Matrix and Feature Importance scores for the
Demonstration Areas specified in Table 2.1. Chile AOI had an extensive area, so subregion modelling was
carried out by creating 3 separate models for the 3 sub-regions. Overall, the results show that Permanent
Water class precision and recall was usually very high. For intermittent water, the model performs slightly
deteriorated and is correlated with the number of samples available for training. When the number of samples
for a class were higher than 6000, we saw very good results, otherwise, the model performed worse. The rest
class is a class which combines the rest of the LC classes into a single class and the precision and recall for that
class were near perfect because of the high amount of data available for the class.

The feature importance heatmap shows higher importance for BO1, BO5, BO9 and NDW!I S2 bands. However,
the variance of the contribution was not very high as it can be seen that the lowest contributing band score
was 100 and the highest contributing band score was between 350 and 400. This shows that the feature
selection was done very carefully and the contribution of all the bands is used to make predictions.

Overall, the Water Pipeline is impressive at detecting water bodies wider and bigger than 10m. The model only
appears to struggle only with very long and narrow water bodies with the width of the water body being
around 10m.

18



Table 2.6 : Prediction statistics for Demonstration Areas at 10m resolution using S2 data
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2.2.5.2 Change Detection

Table 2.7 presents the classification report and confusion matrix for the region of Iraq and Syria for detection
of changing water bodies. The details of the results are shared in the D5.4 Map Making use case Section 7.
Two ML models were used, both trained over the S2 Data with bimonthly aggregated data, at 120m resolution
and the second at 10m resolution. The model at 120m resolution was mainly utilized to drill down probable
change. A second model trained on 2019 S2 data was applied to generate predictions for 2022 data. By utilizing
Change Detection and Drill Down, only the necessary portions of the map are updated, reducing both
operational and Sentinel-2 data costs. The quality of results is exceptionally high, especially for classes like
water, demonstrating the effectiveness of change detection, as observed in the LC-CMS use case.

Table 2.7 : Prediction Statistics for Change Detection over Iraq and Syria AOI for detecting changing water
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2.3 Built-Up

The following section provides a summary of the experiments performed for the Built-up use case.

2.3.1 Overview

This section discusses research done and results obtained within the Built-up area use-case. The research
integrated existing knowledge with the GEM platform (eo-learn and eo-grow) to create a process for
identifying new urban areas on a large scale.

Various methods were explored for built-up area detection, including:
e multi-class land cover classification,
e binary classification of built-up class,
e pixel fraction prediction through regression using pixel-based approach using LightGBM
e regression task with TFCN architecture

e classification task with TFCN architecture

object-detection

All processes described here rely on eo-learn and eo-grow for reproducibility, configurability, and scalability.
The latter was demonstrated for the entire continent of Africa due to the 120 m resolution's speed and cost-
effectiveness. Results are accurate enough for change detection, and a drill-down mechanism identifies areas
for higher-resolution processing to enhance accuracy in specific regions.

Within the use-case we have also developed and openly released a 120 m resolution global cloudless mosaic
Analysis Ready Data cube for cost-effective research.

2.3.2 Areas of Interest

As part of demonstration phase, several AOls have been selected, as shown in Table 2.8. The general
development of eo-grow library, development of models and testing of various approaches has been done on
data from Europe, most notably Slovenia, France and Azerbaijan, where we also have several options for
ground-truth datasets, as described in detail in Section 3 of deliverable D5.2 — Built-up area use-case.

Table 2.8: AOIs used in the built-up use-case.

AOI Area Activity Type Resolution Prediction Year
(km2) (m)
Slovenia 20.273 Development 10, 120 2019, 2020
(Metropolitan) 551,695 Development 10, 60, 120 2017, 2018, 2019, 2020
France
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Azerbaijan 86,600 Development 10, 60, 120 2019

Africa 30,370,000 Demonstration 120, 2020

10 (only parts)

-

Z

/

Figure 6: Built-up Area AOI used in demonstration phase, plotted using world cylindrical equal area projection to
appreciate the size of area.

2.3.3 LightGBM binary classifier deployed on Sentinel Hub as evalscript

In Sections 4, 5 and 6 of D5.2, several tests have been performed to select the most suitable model type and
parameters for performing cost-efficient large scale low-resolution built-up detection.

One of the goals of the exercise presented in section 4 of the D5.2 was to create a workflow where the
processing Sentinel-2 pixels to discern built-up areas is pushed to the Sentinel-Hub. This way the classification
can be done on demand, and at any time and place on Earth. In details, the approach is described in blog post
How to train a binary classifier for built-up areas?.

We allowed the feature selector to utilize all L2A Sentinel-2 bands as well as some interesting indices and
feature ratios. In the end, a combination of raw bands (BO1, B02, B0O3, B04) and several indices (NDVI, NDWI,

NDVI_GREEN, NDVI_RE1, NDVI_RE2, NBSI, CL_GREEN, STI; a collection of well-established ones can be found
in the public Sentinel Hub custom script repository?) has provided the best results.

The model is also deployed on Sentinel Hub, so the demonstration of this approach is available on EO-Browser
at this link. Keep in mind, that the model was trained on Slovenia data, and while we have shown it works well
on Slovenia data (shown in Figure 7), we expect it would struggle in dryer climates and in areas with different

2 https://medium.com/sentinel-hub/area-monitoring-how-to-train-a-binary-classifier-for-built-up-areas-7f2d7114ed1c
3 https://custom-scripts.sentinel-hub.com
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soil types. It works on 10m resolution and performs reasonably well also when data at lower resolution is used,
as can be seen in Figure 8.

Figure 7: Built-up classifier mask script applied on Spodnja Savinjska Region, Slovenia, on 29.6.2921.

Ferrara

~.Parma

o~ Malalbergo

Reggio nell'Emilia

¥Modena

!~

Figure 8: Built-up classifier mask script applied on low-resolution pixel values over Emiglia-Romagna region in Italy.

2.3.4 LULC classification

We have started exploring built-up area classification problem with a more general multi-class classification
problem. Instead of using a simple binary-class classifier like shown in previous section, we have trained a LULC
classifier predicting forest, grass, farmland, bare soil, sand, built-up, permanent and intermittent water and
ice and snow land cover.
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We have spent significant amount of time exploring how to prepare ground truth data (in details described in
D5.2, but also in deliverables D2.1: Data management plan and D2.2: Ground Truth data collection process)
to be suitable for 120m resolution, as at that scale, each pixel often a mixture of classes. The preparation of
ground truth data, resampled to 120m, has also driven the experiments for best sampling methodology. We
have finally decided on pixel-wise 5-fold cross-validation approach.

The results, obtained with a LightGBM classifier with default parameters, trained a small, hand-picked training
data set using a yearly stack of all 12 bands from Sentinel-2 Global Mosaic is shown in Figure 9. Visually, the
results are very good, indicating that a small number of highly accurate and balanced reference polygons could
perform better than a large reference dataset of intermediate accuracy.

Figure 9: Results of random forest classification using TomTom ground truth in France.

To better understand how this model generalize we applied it on the entire Europe (Figure 10). Overall, the
results were quite good in the Central Europe, where vegetation is similar to France.

While testing the effects of training data purity, we have found out that although the precision for mixed pixels
improves at very high purity, the precision for all other classes drops. Since our task in the use-case is focused
on built-up, the multi-class classification this seems to have this inherent issue, counterproductive to our use-
case. Regardless, the experiments we have run on LULC classification have pinpointed to issues we could
expect when running classification at 120 m resolution. The mixture of the LULC classes at this scale seems to
be the limiting factor, hinting that predicting a fraction of each class in each pixel (e.g., regression) would
probably the better approach.
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Figure 10: Model, trained in France, applied to whole Europe.

2.3.5 Built-up area regression models

With the regression approach we narrow down our objective to only distinguish between built-up and non-
built-up areas. While a classification model would detect a presence of built-up, the aim of a regression model
is also to approximate the fraction of built-up area in each pixel. Hence this way we can achieve a built-up
detection on a sub-pixel level. Although we have focused exclusively on artificial surfaces, the approach could
be used for other classes and even turned into multi-class fractional cover regression/classification task.

Based on our insights mentioned in previous section, we have tested two regression models. First one was
pixel based LightGBM regressor, while the other was based on temporal fully connected network (TFCN)
architecture.
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2.3.5.1 LightGBM regression

In this approach we use the fractional land cover and try to predict what percentage of a pixel is inhabited by
a given class. We have used the LightGBM regressor with default arguments and trained the model with
respect to the RMSE (root mean squared error), MAE (mean absolute error) metrics and R? score for more
insight.

Finally, we compared regression and classification results by using pseudo-probabilities of the classifications
in the same way as regression predictions. Figure 11 compares:

e Pseudo-probabilities of binary classification model, trained to detect pixels with >30% built-up
e Pseudo-probabilities of multiclass classification model, trained on majority class ground truth
e Predictions of regression model without weights.

Binary Classification Multiclass Classification

' e SR L
ST ; v Y
1 T '
S

Figure 11: Comparison of various models for built-up areas.
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The results show small differences, which should be evaluated from the perspective of down-stream
application of the results. For instance, if we would like to use the results to find completely new areas being
built, then the model should be highly confident in predicting pixels with low fraction of built-up areas. On the
other hand, if we are looking for changes in already built-up areas (e.g., densification of buildings), then we
probably do not care much for the low fraction pixels.

In Table 2.9 we compare results of LGBM regression model over France, trained on different ground truth
data:

e Using Open Street Map (OSM) built-up reference, obtained by rasterizing OSM buildings and roads on
10m resolution and downsampling to 120m by converting to percentages.

e Global Human Settlements (GHS) data, sampled to 120m resolution by averaging percentages.
o Aregression model trained on OSM built-up reference.

Overall, it seems that OSM reference data has a high accuracy in France. Some inaccuracies are caused by the
process if mapping, buffering and rasterization. GHS is also quite accurate but, in a few areas, has issues with
false positive detections. Our model has more false detections and in general we obtain more “averaged”
predictions i.e., less low values and almost no high values.

Table 2.9: Comparison of several models, showcasing their drawbacks.

Model from OSM reference Model from GHS data Regression model from OSM

Regression model predicts significantly lower values in cities but non-zero values over the sea and other areas:

In some cases model from GHS data mistakes bare mountainous areas for buildings:
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2.3.5.2 Temporal Fully Convolutional Network (TFCN) architecture

The experiments above reported were executed using a pixel-wise ML model, meaning that a built-up fraction
value was estimated for each pixel separately and independently, depending only on the reflectance values of
the pixel. While such approach has the advantage of being flexible and fast to train and run inference on, it
fails to capture the contextual information provided by the neighbourhood of each analysed pixel. As the built-
up areas exhibit specific contextual patterns, we evaluated the performance of the Temporal Fully
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Convolutional Network (TFCN) architecture, proposed by our group for the joint spatial-temporal analysis of
satellite imagery*.

The distribution of the built-up fractional cover over Africa from rasterized Google buildings dataset used as
ground truth data is heavily skewed towards zero (not built-up) and this can lead to a very low number of
samples containing larger built-up percentages that are required for the model to learn how built-up areas
look like. After the sampling, the train-test-validation split has been performed and can be seen in Figure 12.

Figure 12: Train (green), cross validation samples (blue) and the test set samples (red).

The FCN architecture, based on U-net>, is de facto state-of-the-art architecture in semantic segmentation of
natural and remotely sensed images. While the backbone of the FCN consisting of an encoding and decoding
part are maintained, the convolutions in the encoding path of the TFCN are 3D rather than 2D. This
modification allows the network to learn spatial-temporal features simultaneously, therefore characterising

4 Lubej M. et al. "Spatio-Temporal Deep Learning: An Application to Land Cover Classification", LPS 2019,
10.13140/RG.2.2.17961.65128

> Ronnenberg 0., et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation", CVPS 2015,
10.48550/ARXIV.1505.04597

29



({Q Global Earth Monitor

built-up areas both in the spatial and temporal dimension. Code for the TFCN architecture is open-source and
can be found in sentinel-hub/eo-flow® repository on GitHub.

We experimented with different loss functions, to include both regression and classification task
simultaneously during optimisation of the model. This was done in two different ways:

e Dby using a single output and two losses, a Mean Squared Error (MSE) loss for the regression task and
a Binary Cross Entropy (BCE) loss for the classification task. The two losses are then combined in a
weighted sum to ensure they equally contribute to the total loss.

e Dby using two separate outputs and applying a MSE loss on the output of regression task and a BCE loss
on the classification task. The difference in this case is that the two separate outputs are allowed to
vary independently, focusing on the different tasks.

The dataset is highly imbalanced, and we had to under-sample the number of patchlets with very low (or zero)
amount of built-up data.

2.3.6 Built-up Object-detection

For demonstrator purposes we have run a model we created as part of the ESA Philab QueryPlanet
4000124792/18/1-BG grant.

The model relies on HIECTOR (HIErarchical object deteCTOR)’, a tool to apply object detection on satellite
imagery of varying spatial resolutions in a hierarchical fashion. The prototype developed uses Sentinel-2,
Airbus SPOT and Airbus Pleiades as data sources for a hierarchical detection at three spatial scales. While the
tool can be used for the detection of different man-made objects, we validated HIECTOR on building detection.

To facilitate the generalisation and application of the task at different scales we formulate the task as the
detection of oriented objects, with the direct estimation of oriented bounding boxes (OBB). We built on the
Single-Stage Rotation-Decoupled Detector for Oriented Object (SSRDD) architecture and used a pretrained
ResNet34 backbone to train a model on Sentinel-2 imagery and a joint model on Pleiades/SPOT imagery. The
models take as input 4-channels images, namely the blue, green, red, and infrared bands.

Within GEM, we have taken the open-sourced model and used eo-grow to scale up running the model on two
countries from Sahel region: Eritrea and South Sudan. An example from South Sudan is shown in Figure 13.
The red squares are oriented bounding boxes over detected (groups of) buildings.

6 https://github.com/sentinel-hub/eo-
flow/blob/70a426fe3ab07d8ec096e06af4db7e445af1e740/eoflow/models/segmentation unets.py#L129C13-L129C13
7 https://github.com/sentinel-hub/hiector
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Figure 13: Oriented bounding boxes over Yei, a medium-sized city in South Sudan's southwest.

2.3.7 Demo over Africa - comparison of results

For demonstration purposes we have re-trained or fine-tuned the models on Africa. We continued to use the
120 m Sentinel-2 global mosaic (12 bands at 36 time points) for 2020 to show the approach on a cost-effective
scale. For reference data we rasterized Google buildings with a 5m buffer at 10m resolution and then
transformed those results to a built-up fraction mask at 120m. The buffer was again necessary to achieve a
better 120m mask. Some areas of Africa are not covered by the Google buildings reference, which we had to
account for. The lessons learned while developing the model have been collected in another blog post:
Challenges of large open-source datasets for building detection in Africa®.

In Table 2.10 we compare the results of the two best models with regression: LGBM and TFCN. Overall, both
models produce good results, with LGBM typically predicting lower fractions and more salt and pepper results.
The built-up landcover class is as such one of the most difficult ones to predict at 120 m resolution, and even
more so in Africa, where the spectral difference of built up is often not different from bare soil.

Table 2.10: Comparison of several models, showcasing their drawbacks.

Sentinel-2 120 m mosaic LightGBM regression TFCN regression

Bechar, Algeria: False detections in the mountainous and arid areas can be seen in both models, with the TFCN

model slightly more robust to these false detections

8 https://medium.com/sentinel-hub/challenges-of-large-open-source-datasets-for-building-detection-in-africa-
4d1376f85894
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Bossangoa, Central African Republic: The TFCN regression model predicts a more uniform city shape compared
to the LGBM regression. It also displays less less salt and pepper effects, likely due to the convolutions.

Kahuzi Biega Park, DRC: Areas covered with forest do not seem to cause many false positive detections.
Buildings can be missed if they are covered by tree canopy.

Makongo, Ghana: LGBM predictions are more scattered. Due to the spatial resolution of the imagery (even on

10m) it's hard to visually assess the the corectness of the predictions in sparsely populated areas.
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Medina Gounass, Senegal: Even when the difference between built-up and surrounding (bare soil?) areas are

difficult to discern, the models seem to pick it up, particularly the TFCN.

2.4 Crop ldentification Demonstration

2.4.1 Overview

When project results could not significantly increase the accuracy of crop identification with weather data
(D5.6), the consortium de-emphasised the crop identification demonstrator. Instead, we focused on hyper-
resolution city heat maps as a demonstrator for the downscaling of temperature fields in built-up areas with
very high resolution satellite data and local measurements (D2.3, Section 2.4; D2.4, Section 3.6). In response
to requests from project partners we added support for the computing of climate variables on grids that can
be consumed by EO machine learning applications (D2.4, Section 3.3). For meteoblue internal use we created
an interface for working with measurement data (D2.4, Section 2.2).

Some text in these sections provides publicly available information extracted from project confidential

deliverables.

2.4.2 Crop ldentification use case

The crop identification use case was intended demonstrate improved accuracy when using weather data
(Figure 14) in combination with EO data (Figure 15). As this could not be achieved with the available ground
truth data for crops in Europe, the demonstrator development was restricted to allowing users to inspect the
results of a classification run on an interactive map. The example chosen for the demonstrator covers Slovenia,

for which the best ground truth data was available.
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Figure 14: The crop identification use case. Note weather variables are used as parameters.
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Figure 15: Data preparation workflow taking advantage of EO-learn.

The data preparation process heavily relies on Sentinel Hub’s Batch Statistical APl and meteoblue Dataset API.
A flexible encoding-decoding framework (FlexMod) was designed to facilitate experiments with different

models, features, and configurations.

To handle the multi-dimensional layered data described in D5.6, Section 4, we use a flexible encoding-decoding
framework (namely FlexMod, designed with TUM during the project): multiple encoders are designed for
features of different shape such as time length, discretization, or dimension (namely for the EO data and
weather variables) and are then passed to the decoder via a mediator, as shown in Figure 16.

34



Global Earth Monitor

Mediator Decoder
I:'\‘/ Identity
'l_r_ ‘_Y_l r l_'_l
Input Mediates Features Output

Figure 16: Basic concept of the FlexMod Framework fostering flexibility and standardization. Blue bars denote data or
tensors.

To perform crop identification, we tried different encoder-decoder configurations: a Long-Short Term Memory
implementation, a Transformer Classifier, Multi-layer Perceptron and Temporal Attention encoders. The best
performing model was the Transformer Classifier decoder with Temporal Attention feature encoders (D5.6,
Section 10). A result is shown in Figure 17.

avrica
=

Ry

POLY_ID 5059368

PROBABILITY 0.814
P_CLASS_ID ‘331 11021
P_CLASS_NAME |green maize
T_CLASS_ID 33111021
T_ORIG_CLASS_ID(33111021

Figure 17: Using a Sentinel-2 true colour image retrieved from Sentinel Hub services as background.
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The polar-orbiting satellite Sentinel-2 is used to calculate normalized difference vegetation index (NDVI),

2.4.3 Temperature downscaling use case

normalized difference built-up index (NDBI) and albedo at a horizontal resolution of 10 m (Figure 18).
Therefore, different bands of the satellite are used:

Band 8 — Band 4
Band 8 4+ Band 4

Band 11 — Band 8
Band 11 + Band 8

Albedo = 0.356b, + 0.13b, + 0.373bg + 0.085b,; + 0.072b,, — 0.0018

NDVI =

NDBI =

where b2, b4, b8, b11 and b12 are empirical coefficients.
The polar-orbiting satellite Landsat-8 is used to calculate land surface temperature (LST):
K,

K
In(zgg + 1)

LST =

where K1 and K2 are empirical coefficients, and TOA is the top of atmosphere signal.

The satellite information was obtained during clear sky summer conditions for more than 70 different city

H“‘

’ |

domains.

Figure 18: Albedo values (upper left), NDVI (upper right), NDBI (lower left) and LST (lower right) based on a satellite
dataset for Zurich from 2019-07-29.

Figure 19 shows the high-resolution air temperature field in Zurich for different days based on 4 different
satellite datasets.

The analysis showed that the sensitivity to different satellite datasets is small with a mean error below 0.04 K
for all 4 datasets. Therefore, a static satellite dataset is used for the model predictors, instead of a dynamic
satellite dataset.
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Figure 19: Air Temperature [°C] for Zurich for 2020-07-01 18:00 by using satellite data from February (upper left), April
(upper right), August (lower left) and October (lower right).

These calculations are easily performed using eo-learn and eo-grow. As one application, urban heat islands
(UHI) can be mapped out by

1. calculating the difference between each pixel and the mean values of the surrounding rural
areas, which are defined by the classification of the local climate zones (LCZs);

2. averaging the differences over one year.

_ Delta
Temperature [K]

Figure 20: UHI for Basel (left) and Zurich (right) by averaging air temperatures over the entire year 2020.

The approach enables Continuous Monitoring using just the weather data. Downscaling model updates are
required from time to time to adjust to changes in the built-up environment that change the indices used in
the model.
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2.4.4 Compute climate variables on grids use case

In discussions with project partner the need for derived weather and climate variables became apparent.
Derived here means that several "raw" variables need to be combined to obtain a desired variable. meteoblue
supports this through a calculation engine in its Dataset APl and, by extension, through its Python SDK and eo-
learn adapter (D2.4, Section 3.4). The calculations of derived variables benefit from the optimisations
described in D2.4, Section 3.5, making them more practical for larger datasets.

The following sections describe the derived variables and their calculation. The first example provides all
technical details, which are the same for all derived variables save a few parameters. Full examples for all
derived variables are given in Jupyter Notebooks®.

2.4.4.1 Climate Indices

“A climate index is defined as a calculated value that can be used to describe the state and the changes in the
climate system” — Integrated Climate Data Center (ICDC).

2.4.4.1.1 Tropical Nights

A tropical night is a term used to describe days when the temperature does not fall under 20 °C during the
night-time. Due to climate change, many countries are experiencing a significant increase in tropical nights
compared to last century.

Query for yearly number of tropical nights for a given location:
1. Select alocation and a time interval of 1 or more years.
2. Select the dataset ERAST, Temperature, 2 m above ground, hourly.
3. Aggregate by day to daily minimum.
4. Value is greater than or equal to 20 then pick O or 1.

5. Aggregate by year to yearly summation.

Note: if producing a map or if the ERAST grid-cell is in the immediate vicinity of the sea remember to mark the
option “exclude sea points”.

° https://github.com/sentinel-hub/eo-learn-examples/tree/main/climatological_days
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Number of tropical nights for 2021 Number of tropical nights for 2022

Figure 21: Number of tropical nights in Italy in two different years

The images in Figure 21 were obtained through Python, simply by selecting from the Dataset API a geographic
polygon (in this case lItaly), instead of a single location. The following option included in the available
transformations was also used to obtain a better representation:

"Resample to a regular grid using linear interpolation", with a grid resolution of 0.025°.

Using the meteoblue_dataset_sdk Python package it is possible to retrieve data for creating the above maps
in a few simple steps, defining a unique query. The tropical nights” example is shown in the following. All other
examples are formed analogously.

Query for tropical nights:
query_map = {

"units": {
"temperature": "C",
"velocity": "km/h",
"length": "metric",
"energy": "watts"

1

"geometry": {

"type": "GeonamePolygon",
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"geonameid": 3175395 #this code corresponds to Italy
I3
"format": "JSON",
"timelntervals": |
str(year)+"-01-01T+00:00/"+str(year)+"-12-31T+00:00"
],
"timelntervalsAlignment": "none",
"queries": [
{
"domain": "ERAST",
"gapFillDomain": None,
"timeResolution": "hourly",
"codes": [
{
"code": 193,

"level": "2 m above gnd"

}
],
"transformations": [
{
"type": "aggregateDaily",
"aggregation": "min"
b
{
"type": "valuelsAbove",
"valueMin": 20,
"returnClassification": "zeroOrOne"
b
{

n,on

"type": "aggregateYearly",

"o
'3

P)

Global Earth Monitor
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n,n n

"aggregation": "sum

b
{
"type": "spatialTransform",
"gridResolution": resolution,
"interpolationMethod": "linear",
"spatialAggregation": "mean",
"disjointArea": "discard",
"elevationDownscale": "disabled"
}
]
}
]
}
API call:

client = meteoblue_dataset_sdk.Client(apikey)

result = client.query_sync(query_map)

lats = list(result.geometries[0].lats)

lons = list(result.geometries[0].lons)

#Use a function to convert the datasetAPI protobuf file into a pandas dataframe

data = list(meteoblue_result_to_dataframe(result.geometries[0])["193_2 m above gnd_sum"])

2.4.4.1.2 Frost Days
Frost days are defined as days in which temperature drops below 0°C.
Query for yearly number of frost days for a given location:
1. Select a location and a time interval of 1 or more years.
2. Select the dataset ERAST, Temperature, 2 m above ground, hourly.
3. Aggregate by day to daily maximum.
4. Value is less than or equal to 0 then pick 0 or 1.

5. Aggregate by year to yearly summation.
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Note: if producing a map or if the ERAST grid-cell is in the immediate vicinity of the sea remember to mark the
option “exclude sea points”.
2.4.4.1.3 Ice Days
Ice days are defined as days in which temperature never goes above 0°C.
Query for yearly number of ice days for a given location:
1. Select alocation and a time interval of 1 or more years.
2. Select the dataset ERAST, Temperature, 2 m above ground, hourly.
3. Aggregate by day to daily maximum.
4. Value is less than or equal to 0 then pick O or 1.

5. Aggregate by year to yearly summation.

Note: if producing a map or if the ERAST grid-cell is in the immediate vicinity of the sea remember to mark the
option “exclude sea points”.
2.4.4.1.4 Hot Days
Hot days are defined as days in which temperature rise above 30°C.
Query for yearly number of hot days for a given location:
1. Select a location and a time interval of 1 or more years.
2. Select the dataset ERAST, Temperature, 2 m above ground, hourly.
3. Aggregate by day to daily maximum.
4. Value is greater than or equal to 30 then pick O or 1.

5. Aggregate by year to yearly summation.

Note: if producing a map or if the ERAST grid-cell is in the immediate vicinity of the sea remember to mark the

option “exclude sea points”.
- Heating Degree Days (HDD) & Cooling Degree Days (CDD)

Heating degree days are a measure of how much (in degrees), and for how long (in days), the outside air
temperature was below a certain level. They are commonly used in calculations relating to the energy
consumption required to heat buildings. With regard to heating degree days, the base temperature of a
building is the outside air temperature below which that building needs heating.

Cooling degree days are a measure of how much (in degrees), and for how long (in days), the outside air
temperature was above a certain level. They are commonly used in calculations relating to the energy

consumption required to cool buildings.

Further explanations can be found at https://www.degreedays.net/introduction.
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Hot days are defined as days in which temperature rise above 30°C.

Query for yearly number of heating degree days for a given location:

1.

2.

Select a location and a time interval of 1 or more years.
Select the dataset ERAST, Temperature, 2 m above ground, hourly.

Value is less than or equal to 15 then pick O or delta. (Here 15 is the base temperature, which can be
arbitrarily selected by the user).

Aggregate by year to yearly summation.

Download the file as CSV and divide the values by 24.

Note: if producing a map or if the ERAST grid-cell is in the immediate vicinity of the sea remember to mark the

option “exclude sea points”.

2.4.4.1.5 Consecutive Dry Days

Consecutive dry days are defined as the number of consecutive days with less than 1mm of rain up to a

maximum of 365 (1 year). This index is really important for evaluating drought conditions.

Query for maximum number consecutive dry days in a year for a given location:

1.

2.

Select a location and a time interval of 1 or more years.
Select the dataset ERAST, Precipitation, Surface, daily sum.
Value is less than or equal to 1 then pick O or consecutive count.

Aggregate by year to yearly maximum.
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20 . 20

Figure 22:Number of cooling degree days (CDD) in Italy in two different years

The graphs above were obtained through Python, simply by selecting from the Dataset APl a geographic
polygon (in this case Italy), instead of a single location. The following option included in the available
transformations was also used to obtain a better representation:

"Resample to a regular grid using linear interpolation"”, with a grid resolution of 0.025°.

2.4.4.1.6 Heavy Precipitation Days

Counting the number of days within a given period in which daily cumulative precipitation has exceeded a
given threshold (such as 20, 30, 40 mm).

Query for number of heavy precipitation days in a year for a given location:
1. Select a location and a time interval of 1 year.
2. Select the dataset ERAST, Precipitation, Surface, daily sum.
3. Value is greater than or equal to 20/30/40 then pick 0 or 1.
4. Aggregate by year to yearly summation.
- Violent Precipitation Events

Counting the number of events in one year during which the cumulative precipitation in 3 days exceeded 150
mm. This index is very important because it provides an estimate of the meteorological contribution to the
hydrological risk of a given area.

Query for number of violent precipitation events in a year for a given location:
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1. Select a location and a time interval of 1 year.

2. Select the dataset ERAST, Precipitation, Surface, daily sum.

3. Aggregate over a sliding time window using a running Summation of the last 3 timesteps.
4. Value is greater than or equal to 150 then pick 0 or 1.

5. Aggregate by year to yearly Summation.
2.4.4.2 Other derived variables

2.4.4.2.1 Atmospheric Stability

Compute the heavy storm likelihood, i.e., the number of days in which the CAPE (Convective Available Potential
Energy) value is above a certain threshold (e.g., 5000 J/kg).

1. Select a location and a time interval of 1 year.
2. Select the dataset ERAST, CAPE, 180-0 mb, daily max.
3. Value is greater than or equal to 5000 then pick O or 1.

4. Aggregate by year to yearly summation.

2.4.4.2.2 Agricultural Photovoltaic (Agro PV)

Agro PV is the simultaneous use of areas of land for both solar panels and agriculture. Because solar panels

and crops must share the sunlight, the design of Agro PV facilities may require trading off such objectives as
optimizing crop vield, crop quality, and energy production. In some cases, crop yield increases due to the shade
of the solar panels mitigating some of the stress on plants caused by high temperatures and UV damage.

Thanks to the wealth of datasets provided by our API, we sought to construct a parameter expressing the
suitability of a country to host Agro PV plants. The project is still under development, but the following steps
give an idea of the potential of this approach.

From the GLOBCOVER dataset [0.3 km], we selected only the land cover types which may be suitable for
installing PV panels. The list is:

11 Post-flooding or irrigated croplands (or aquatic)
14 Rainfed croplands
20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)

30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)
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Suitable Land Covers - Switzerland

Figure 23: Ground cover in Switzerland that may be suitable for installation of AgroPV

From the NEMS4 model [4 km], we selected soil moisture 0-10 cm, averaged over a period of 10 years (2011
—2020).

Soil Moisture 0-10 cm - NEMS4
average 2011-2020 - Switzerland

0.34

-0.32

0.28

0.26

Figure 24: Soil moisture average Switzerland for the period of 2011 to 2020

We tried to come up with a parameter for Agri PV suitability combining the previous two data frames and
adding some conditions:

e |f soil moisture is > 0.4 then it’s not suitable: too wet, need of intense solar radiation.
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e |f soil moisture is < 0.2 then it’s not suitable: too dry.

In the range between 0.2 and 0.4 the more suitable terrains are the drier ones (more potential improvement
from agro PV, therefore define the suitability as proportional to (1 — soil moisture).

Agro PV Suitability [%] - Switzerland

74

2

r70

68

66

Figure 25: Areas in Switzerland with varying degrees of suitability for the installation of AgroPV

2.4.4.2.3 Difference of elevation in ERAST grid-cells

This use-case shows how a static dataset (in this case height/elevation at 250 m resolution) can be used to
obtain information about other datasets such as ERAST.

The goal here is to obtain the maximum difference in heights within a given ERAS5T cell:
1. Select a given location or area.
2. Select the dataset GMTED250, height/elevation, surface, static.
3. Resample to domain ERAST using linear interpolation to downscale and Minimum to upscale values.

4. In parallel, select again the same dataset and resample to domain ERAST using linear interpolation to
downscale and Maximum to upscale values.

5. Subtract the two values to get the difference in elevation.
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Figure 26: Minimum and maximum elevations (in meters) of ERAS5T grid cells in Ticino

2.4.4.2.4 Land-use of ERAST grid cells

Using the static dataset GLOBCOVER (resolution 300 m), it is possible to select a given land cover type and see
which is the percentage of it within an ERAST grid-cell.

1. Select a given area.
2. Select the dataset GLOBCOVER, Land Cover Classification, Surface, Static.

3. Value is between xxx and xxx then pick O or 1. (xxx is a general land cover type, such as 190, 11 or 20
— can find the list here: https://docs.meteoblue.com/en/meteo/data-sources/datasetsttglobcover )

4. Resample to domain ERAST using Linear interpolation to downscale and mean to upscale.

2.4.4.3 Measurements interface use case

Motivated by GEM needs for reliable ground truth data, meteoblue has created a web interface for
measurement data for its own data management and as basis for future layered services such as Quality

Assurance as a Service.

2.4.5 Demonstration Applications

The city heat map demonstrator has been developed into a product and is publicly accessible; other
demonstrators require an API key'? or, in one case, a specific arrangement for data protection. Please see

Section 4 for details.

10 The APIKEY for reviewers is ‘5d2e1945322¢c-GEM-reviewers’. For questions please contact support@meteoblue.com.
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2.5 Conflict Pre-Warning Demonstration

The section below provides a summary of the experiments performed for the Conflict Pre-Warning
demonstration on the selected area, more details about the use case are available in D5.5.

2.5.1 Overview

The CPW use case addresses the domain of Climate Security in order to provide ad-hoc products supporting
decision-makers. Understanding the Climate Security nexus is complex and heterogeneous data are needed
to address the different scenarios.

The support to three steps in the GEOINT production are envisioned for the demo (See Figure 27). In a first
step, wide subcontinental automated continuous monitoring at coarse resolution is implemented. In specific
regions where more details are needed, a second step provides semi-automatic approaches to providing
GEOINT analysts with standardized sets of data (across different dimensions) and ad-hoc procedures or
analyses are used to gain situational awareness at medium-high resolution. Finally, on a third step, finer
resolution data is used to perform ad-hoc analyses, which support the generation of change maps, impact
assessments or contingency plans.

Step 1: Continuous Monitoring

External factors:
socioeconomic, events, natural

New products:

Fully automated - Risk maps

Continuous (every 3 months) - New high-risk area signals
Wide areas: Subcontinental to global |

Coarse geospatial resolution (costl) ‘ o |

disasters

ECONAS Leders Meetin A, LS, IN Bock
844,574] 1 h-mhnm'.

Step 2: Specific products and Situational Awareness

- OSM

Semi-automated to Automated - ESAWorld

* Triggered on-demand
*  Wide areas: National to subcontinental
* Medium geospatial resolution (e.g. 120m)

Frequent temporal resolution (up-to daily for

some types of data)
* Change detection products

SRR Expertanalyst * Impact assessment
*  Small areas el
* High to very high geospatial resolution.

*  Conti lanni
Temporal as required (up-to daily) pr: d::lcgt:ncy LBl

Cover

- Global
Surface
Water

- ACLED

- EM-DAT

- ERAS

Step 3: Detailed Analyses

¢ Manual to semi-automated

Figure 27: High level representation of the approach for the demo

In the first step, a wide sub-continental area (Sahel) is monitored at a coarse spatial resolution to generate
updated risk maps every three months for the period 2017-2022 (the period has been defined based on the
availability of all the required data for the model application. A Gradient Boosting Classifier was trained (See
2.5.3) from a homogenised stack of heterogeneous data, including socioeconomic data (e.g. accessibility to
urban areas, night-time lights, distribution of ethnicities), meteorological data (e.g. precipitation, temperature
averages and indices), EO data and derived indicators (e.g. NDVI), data on natural disasters and information
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about the topography are used to classify areas with high risk of being affected by armed conflicts in the
subsequent quarter (3 months window). This high-level risk map provides an overview for the whole region,
including also derivative layers on “new high-risk areas”. This approach is only possible through continuous
monitoring approaches such as those implemented in GEM.

The second step of the demo focused on an activation in Niger. Quite often, a deeper situational awareness
assessment of specific countries or areas is needed by GEOINT analysts. In this case, the traditional approach
involves a GEQINT analyst using his/her knowledge and experience to gather data and information over the
area of interest at a higher detail level. Such data may allow to identify the co-occurrence of possible triggers
of conflicts (e.g. natural hazards, coups, presence of terrorist groups). This process is very specialized, often
performed manual (hence time-consuming), it is difficult to keep provenance of data (which is essential for
trustworthiness of the analysis) and the results may vary depending on the expertise of the analyst.

The developed procedure aims therefore to standardize the process reducing based on selected datasets.
From the high level analysis, Niger showed a fragile economy (D5.5, Section 4.1). It is also a region severely
affected by both floods and drought issues (D5.5, Section 4.2) and with a high concentration of conflicts (D5.5,
Section 4.3). In fact, Niger faced a difficult year of conflict in 2021, with civilian deaths reaching an all-time
high (as reported by ACLED). Influence of extremist groups was on the rise, with the Greater Sahara branch
of the Islamic State West Africa Province (ISWAP-GS) behind almost 80% of total civilian fatalities in 2021's in
Niger, which triggered the creation of local defence groups in the Tillaberi and Tahoua areas and numerous
clashes and fatalities. In Tillaberi region, also JNIM (Jama'at Nasr al-Islam wal Muslimin’s) was steadily moving
closer to Niamey, with violent incidents recorded within 30 km of the capital. The rising violence and
community armament has been reported to increase the risk of larger communal conflict by different
organisations such as ACLED.

Recently, the military takeover in Niger (which is the ninth in a long series of coups and coup attempts that
have destabilised West and Central Africa over the past three years) raises serious concerns for the future of
the Sahel. The Sahel has become the epicentre of terrorism globally, accounting for 43 percent of terrorism
deaths in 2022, more than both South-Asia, the Middle East and North Africa combined. The situation of Niger,
which stood out as “last bastion of democracy in the Sahel,” and it was moreover considered the “last bulwark
against jihadist and Russian influence” across the region may certainly pose serious risks for the region,
impacting counter-terrorism efforts, potentially benefitting terrorist organisations, and eventually impacting
the broader Sahel’s security landscape??.

A detailed analysis has been performed exploiting the new service-prototype enabling the discovery, access,
extraction and integration of heterogeneous data sources (2019-2022). In this step, in terms of EOQ and meteo
data, the GEM datacubes at 120m resolution have been employed (See D5.5).

Finally, as a third step a flood event is analysed at finer resolution. In this case, the end user is not interested
in a wide area analysis, but in a detailed analysis of a local area affected by the hazard. The developed tools
and methodology are applied to produce ad-hoc analysis and impact assessment considering the support of
VHR data, which provides very useful information for analysis at local scale.

1 https://acleddata.com/10-conflicts-to-worry-about-in-2022/sahel/
12 https://www.icct.nl/publication/unravelling-niger-coup-and-its-implications-violent-extremism-sahel
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2.5.2 Scope Area

The scope area for the demo is the Sahel region. More details about this area, consistently affected by drought
and considered by experts as a climate change hotspot, can be found in D5.5. In particular, the full Sahel is
covered in the continuous monitoring of conflict risk at a resolution of 0.12. Then, an activation was executed
in Niger and a flood event was detected an analysed in three cities.

Sahel 13.5 million 2017-2022
Niger 1.267 million 120m 2019-2022
Ad-hoc 3 regions selected 10m—<1 | June-November 2020
regions (between 100 and m
400 km2)

Figure 28. AOI used in demo. In pink, Sahel. In blue, Niger. Yellow points, Niger cities where impact of flooding was
analysed.

2.5.3 Model Type & Parameters

In the first step, a homogenised stack has been built with multiple open sources of information described in
the table below. This dataset has been used to train, over the wide area, an Extreme Gradient Boosting (XGB)
regression trees classifier. The classifier has been trained to predict high-risk conflict areas in a 0.12x0.12 grid.
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To train the model, the data on conflicts has been used to continuously generate yearly maps of risk over a
rolling window of three months, by assigning a value of 1 for the grid cells where conflict happened throughout
the year (high-risk) and a value of 0 to the grid cells without conflict over the year (low-risk). For the training
phase, an equal number of positive and negative samples have been randomly selected to train the model.

The model has been continuously re-trained with new samples: The first model was trained on data from 1
year of data, finalizing in 2017 Q1 (meaning from 1°* April 2016 until 31 March 2017). The classifier metric
chosen is the AUC and the parameters used are listed below:

! 1

params = {‘objective’: 'binary:logistic', 'eval_metric": 'auc', ‘colsample_bytree': 0.3, 'learning rate': 0.01,
'max_depth': 5, ‘alpha’: 10, 'n_estimators': 100, 'num class': 2 }

Then, the model was used to generate a risk map in the area for the subsequent time window, e.g., 2017 Q2
(meaning risk of conflict until 30" Jun 2017) and validated against the conflicts reported in the same
timeframe. For subsequent iterations, the previous model was again retrained with the data from the most
recent year (12 months) in a 3-month sliding window approach.

For the situational awareness phase of the demo, some of the methods to analyse data described in detail in
D5.5 were used. In particular, the more relevant are:

- Socio economic data gathering for high-level contextual awareness. Violin plots in combination with
time series were used for the analysis.

- Filtering, aggregation and correlation of conflict and disaster datasets exploited through Elasticsearch
cluster and Kibana dashboard. The data includes relevant information about actors involved in
conflicts such as extremist groups. Its aggregation capabilities also support the identification of
proliferation patterns in certain areas.

- Homogenization of ancillary data (e.g., population, ethnicities, urban accessibility...).

- Historical water detection and flooding analysis. As many reports on natural disasters (e.g., floods or
droughts) are not detailed in the geospatial domain and typically report floodings at the country or
region level, specific assessment has been done to assess at higher granularity where and when floods
tend to happen, as different regions are more prone to flooding in different seasons (rainy or dry

seasons).
Download Data % R Aggregate information o
: - Nbwi D-I e on detected water and Statlst!cal temporal
Adlspiltine - ESALC L nominal water extents Shhss

EHH T
INENEN RS
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- Anomaly detection of EO and meteo data, by comparing the historical analysis with forecast data.

This allows identifying situations in which precipitations or temperature patterns go above/below

what is normal for the same period of the year across the historical data.

2.5.4 Input data

A summary of the input data is provided in the Table 2.11 below. In the comments section, it is specified which

data are used in the three steps (1. Low resolution risk modelling, 2. Medium Resolution Situational Awareness,

3. High Resolution Detailed Analysis). More details on the data are available in D5.5.

Table 2.11: Summary of the input data for conflict pre-warning use-case

Category

Series Name

Data Source

Temp &

Spatial
resolution

Temporal

availability

Comments

Migration

Socio-economic

Socio-economic

Disasters

Disasters

Ethnicities

Earth Observation

Earth Observation

Earth Observation

Earth Observation

Earth Observation

Meteorological

Internally displaced

persons, total displaced by

conflict and violence
(number of people)
GDP, population growth,

inflation, unemployment,

mortality rates, access to

water, CPIA transparency,

accountability, and
corruption in the public
sector rating, etc.
World Population High
Density Maps

EM-DAT

Sendai DeslInventar
Ethnic Diversity

Sentinel-1, Sentinel-2

Average NDVI

ESA World Cover

Night-time lights

Topography (DEM)

meteoblue datasets API
- Temperature
- Precipitations
- Soil Moisture

WoldBank - IDMC

WorldBank

WorldPopHub

EM-DAT

Deslnventar Sendai

GeoEPR

Sentinel-2

MODIS- MOD13C1

ESA WC dataset

meteoblue

Country-scale

Yearly
Country-scale

Yearly
1km

Daily
Sub national

Daily
Sub national

Sub-national

~5 days
Country-scale

16 day
composite
0.05 degree
Yearly

10m

Daily
370m — 740m

Static
SRTM 3 sec

Hourly/Daily
NEMSGLOBAL
(30 km)

2009-2021

1960-2021

2000-2022

1900-2022

2015-2022

1960-2021

2016-2023

2000-2023

2020-2021

2011-2022

Static

1990-2021

Step 2

Step 2

Stepl, 2

Step 2

Step 1, 2

Step 2, 3

Step 1

Step 2, 3

Step 1, 2

Step1,2,3

Step 2
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Meteorological Precipitations and Climate Research Unit = Monthly 1901-2022 Step 1
temperature TS4.0 global dataset

Conflict ACLED Events ACLED Daily 1996-2021  Step 1,2
Sub national
(e.g. town,
part of
region)

Other Urban accessibility GAM JRC Static 2000/2015  Step1
30 arc
seconds

Other OpenStreetMap OpenStreetMap Static with Static with  Step 3
regular regular
updates updates

2.5.5 Results

2.5.5.1 Step 1 - Risk maps (every three months in period 2017-2022)

As introduced in Section 2.5.3, the model is trained and validated with data on the corresponding time frame
(e.g. 2017Q1), while the test metrics reported below correspond to the performance of the model in support
of an early-warning system, i.e. model trained in 2017Q1 tested to forecast conflict areas for 2017Q2 and
scores computed once the data of 2017Q2 is available.

In terms of validation, the average AUC for the period of analysis (2017-2022) is 0.805. The minimum 0.78 and
the maximum 0.84, which could be considered valid results.

TRAN/TEST 2017Q1 201702 201703 201704 2018Q1 201802 201803 201804 2019Q1 201902 201903 201904 2020Q1 2020Q2 202003 202004 2021Q1 202102 202103 2021Q4 2022Q1 2022Q2 202203 202204
2017Q1 0.817
201702 0813
201703 0.827
201704 0814
201801 0.795
201802 0.789
201803 0.780
201804 0.800
201901 0.811
201902 0.799
201903 0.810
201904 0.794
202001 0.805
202002 0.816
202003 0.824
202004 0.802
202101 0841
202102 0795
202103 0.794
202104 0.795
202201 0.793
202202 0.801
202203 0.794
202204 0,813

Regarding feature importance, the top5 ranking of features by decreasing importance is:

1. NDVI (2.533)

Standardized Precipitation Index, 24 months (2.498)
Mean precipitations (2.360)

Standardized Precipitation Index, 12 months (2.256)
Standardized Temperature index, 24 months (2.175)

vk wnN

Regarding the test metrics, the average AUC is 0.758, minimum (cumulative training until 2022 Q2, prediction
for 2022 Q3) 0.62 and maximum (cumulative training until 2020 Q4, prediction for 2021 Q1) 0.834.
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The risk map for the best performing forecast model is discussed below.

Overview Map Analysis

The model properly predicts the main
conflict areas for the period, such as the
Lake Chad Basin, the borders between
Mali-Burkina Faso and Niger, and between
Nigeria and Cameroon.

The high-risk areas predicted by the model
& are wider than the resolution (0.12 grid)

: used to accumulate the presence of
conflict. This seems reasonable as the

variables analysed do not vary in space so
rapidly, hence the model is not able to

predict in high level of detail where exactly|
e Orange pixels represent predicted high-risk areas

] _ . . the risk of conflict will happen, but it is
®  Red pixels represent the presence of conflict for the time period

able to pinpoint coarsely the areas where
conflicts are likely to happen
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Prediction of high-risk conflict areas for 2021Q1 in
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Temporal Evolution

Mali - Burkina Faso — Niger borders

The borders between Niger and Burkina
Faso suffered an increase in conflicts
throughout 2019, 2020 and 2021. This
effect is captured by the model, that

enlarges the high-risk area, highlighting

P ... | theincreased risk.

Accumulated predictions of conflict areas (orange) and actual
conflicts (red) in the Mali-Burkina Faso-Niger borders for 2018 (left)
and 2021 (right)

Cameroon — Central African Repubilic.

The number of conflicts in the area grew

- R - : : I};' 'y "t 7| from around 140 conflict events in 2018

- ' . -:: o - " . | to more than 400 conflict events in 2021.

g Al N 3 The model showcases more high-risk

T {8 ; 7 Sl R . pixels in the area of the border for 2021

than it does for previous years, following
this new trend.

Accumulated predictions of conflict areas (orange) and actual
conflicts (red) in the Cameroon-CAF borders for 2018 (left) and 2021

(right)

The summary map below highlights the conflict areas aggregated by year, which is aligned with the analysis in
the tables above, where the predictions analyzed for 2021 highlight the decrease around the Lake Chad Basin,
and the increase in the Mali-Burkina Faso — Niger borders.
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Figure 29: Conflicts evolution in the main conflict clusters to visualize the dynamics of conflict hotspots

2.5.5.2 Step 2 - Niger situational awareness (2019-2022)

Situational awareness in the context of GEOINT (Geospatial Intelligence) production refers to the
understanding and perception of environmental elements, events, and dynamics both in time and space, the
comprehension of their meaning, and the projection of their future status. It's a critical component for

informed decision-making, especially in defence, intelligence, disaster response, and security operations.

Different datasets and products are produced thanks to the GEM project aiming at 1) collecting and integrating
geospatial data from various sources, 2) using the gathered data, analysts provide insights into current events,
revealing patterns and relationships that might not be immediately obvious, and 3) providing standardized
data to homogenise and keep track of the provenance of data used for the GEOINT production.

Different data (See D5.5) were integrated (See Section 2.5.3), providing information on different aspects
related to the Climate Security Nexus.

Socio-economic data such as the examples in Figure 9 highlights Niger issues related to water stress, especially
in recent dates, while Figure 10 shows the distribution of population in Niger, which is essential to analyse the
impact of certain events such as natural disasters in local populations.
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Figure 31: High density population distribution map for Niger

A dedicated processing has been developed to gather Sentinel-2 data at 120m resolution to compute the NDVI
and extract a water mask. This water mask is then compared with a reference layer (ESA World Cover) to
provide different analyses. Analysing the time series is then possible to identify patterns (e.g., seasonality) and
derive risk maps for flooding (See Figure 32). This data is then manually cross checked against online reports
over the area. This data is then useful for analysts to better understand potential issues triggering flooding
(e.g., displacements or resource scarcity influenced by natural disasters such as floods).
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Figure 32: Example of anomalies map (risk of flooding) for 2020

Contextual information is also provided from meteorological data such as the maps shown in Figure 33. Using
that data and analysing long time series, a methodology was defined to compare history of precipitations and
temperature with short-term forecasts (e.g., around 5 days in the future) providing a risk signal in case of
anomalous temperatures or precipitations patterns.

2019

#_.

0 1 2 3

Average Temperature

—— Average Temperature
276 —-- Mean Line

272

2000 2005 010 015 2020

Figure 33: Top: Deviation from yearly average temperature (number of standard deviations). Bottom: Yearly average
temperatures
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2.5.5.3 Flood in Niamey September 2020: impact assessment

In the third step, it was carried out a detailed analysis of the impact of flooding that took place on Niamey and
other cities of Niger in September 2020.

In Summer 2020, Niger suffered days of torrential rainfall that caused the River Niger to burst its banks. The
rainfall hit the country since July but in September the flooding caused by River Niger (and others) affected
more than 200000 people and killed at least 45 people. Local authorities reported almost 30,000 houses being
affected and also the damage to granaries and crop fields.

In the demo, the focus for the impact assessment has been put in Niamey and the cities of Bangi and Tahoua.

Figure 34. Cities selected for the impact assessment.

Using continuous revisit of Sentinel-1 and its independency of weather conditions, it has been computed the
evolution of flood areas in Niamey. For that, a thresholding algorithm was applied at 10 meters resolution. The
peak of the flooding occurred on 15 September, being visible the consequences till months after, as shown
in Figure 35. Despite the precipitations during the months of June, July, August there was no flooding when
comparing with previous year, but in September the number of pixels affected reached its peak.
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Figure 35. Flood area in AOI from June to November 2017-2020

The Sentinel-1 and Sentinel-2 images on 15" September show clearly the affected area (Figure 36Figure 35)

and allows the generation of a flood mask (Figure 37)

S1:14/09/2018
$2:11/09/2018

$1:15/09/2020
$2:15/09/2020

Figure 36. Sentinel images in a reference date and on 15th September 2020 (peak of flooding)

In order to get more information of affected areas, additional datasets have been used to analyse the impact
on infrastructure and population. Regarding the infrastructure, OSM provides information of building and
infrastructures. If it is carried out the intersection of flood areas with OSM features, it is possible to estimate

the affected elements (Figure 38).
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Figure 37. Flood mask in Niamey on 15th September 2020
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Figure 38. In red, buildings affected by Niamey flooding.
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The use of Human Settlement Layer allows also to estimate the number of people affected by the flooding in
Niamey at a given date.
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Figure 39. Number of people affected by Niamey flooding.

The use of VHR imagery enables to obtain the flood mask at a better resolution to improve the accuracy of the
assessment. The VHR imagery is not acquired regularly: a request needs to be done to image providers. This
is possible when the hazard to be monitored can be predicted or when the analysts is interested on monitor
a specific area. As an example, after the flooding in Niamey and activation (EMSR 466) was made in other cities
to assess the impact.

As performed in EMSR466, using GEM developments it is possible to apply the same methodology in Bangi to
determine if the city was affected or not. Also, requesting VHR imagery allows this same analysis to be done
at a spatial resolution of 0.5-3 meters.
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Figure 40. Sentinel-1 Coloured image over Bangi.
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Figure 41. Flood area in Bangi AOI from June to November 2017-2020

In Bangi, the analysis performed shows that there is also flood area reaching its peak on September 2020, but
in this case there is no direct impact on people or buildings, since according to ESA World Cover, the affected

area is mostly cropland, grassland and shrubland, not built-up areas are affected (Figure 42).
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Figure 42. Land cover of flood areas in Bangi AOL.

Finally, for the demo it was carried out also the analysis of the impact in Tahoua using Sentinel-2 at its native
resolution of 10m to obtain the flood mask. This is possible only when there are not clouds in the scene. Once
the flood mask is available, the impact assessment with complementary datasets can be done in the same
way, independently of the origin of the mask (51, S2, VHR).

Figure 43. Flood mask (blue) and affected buildings (red) in Tahoua on 27t September 2020.
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3 Continuous Monitoring

Continuous monitoring of Earth's environment is crucial for addressing climate change, supporting sustainable
socio-economic development, and informing political decisions at local, national, and international levels. It
provides the foundation for evidence-based policies and actions that are essential for safeguarding our
planet's future and ensuring the well-being of current and future generations.

EO programs like Sentinels or LandSat provide objective view of Earth and play a pivotal role in continuous
monitoring due to their capabilities and comprehensive coverage, both spatially as well as temporally. With
EO imagery it is possible to monitor changes in natural ecosystems, like deforestation, urban expansion,
wetland degradation, glacial retreat, sea-level rise, shifts in vegetation patterns; it is possible to provide
insights into crop health, soil moisture, land productivity, track water resources and water quality, urban
growth, infrastructure development, deforestation and forest degradation, support biodiversity conservation
efforts and many more.

In general, the observations contribute to a better understanding of the Earth's changing climate and help in
the development of climate change mitigation and adaptation strategies.

3.1 Normalized Difference Water Index

In GEM, we have set out to show how Continuous Monitoring can be done cost-effectively at scale. This section
describes how one can employ GEM framework to continuously monitor Sahel region for anomalies of the
normalized difference water index (NDWI).

In an approach, similar as defined for monitoring plant water stress', we have set out to monitor water
content using the NDWI defined by McFeeters®*:

Sentinel-2 NDWI = (BO3 - B08) / (BO3 + BOS)

which can be used to monitor changes related to water content in water bodies. As water bodies strongly
absorb light in visible to infrared electromagnetic spectrum, NDW!I uses green and near infrared bands to
highlight water bodies. Index values greater than 0.5 usually correspond to water bodies. Vegetation usually
corresponds to much smaller values and built-up areas to values between zero and 0.2.

Additionally, we only calculate NDWI for pixels where there is data available, and the pixel is not marked as
cloudy (both available in Sentinel Hub using dataMask® and cloudMask!® “bands”).

13 https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet ndwi.pdf

145, K. McFeeters (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water
features, International Journal of Remote Sensing, 17:7, 1425-1432, DOI: 10.1080/01431169608948714

15 https://docs.sentinel-hub.com/api/latest/user-guides/datamask/

16 https://docs.sentinel-hub.com/api/latest/user-guides/cloud-masks/
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3.2 NDWI baseline statistics

To obtain the baseline statistics, which will be needed to find anomalies, historical data is needed. In our case
we calculated the per-month baselines from Sentinel-2 L1C data from January 2020 until December 2022 for

each pixel of the Aol. Figure 44 shows how mean and standard deviation of NDWI is changing throughout the
year for one EOPatch.

NDWI

# valid observations

January

February

March

April
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Figure 44: NDWI baseline statistics over months.

Looking at the data from another perspective is shown in Figure 45, where NDWI statistical baseline is plotted
for two points — one over a river, where NDWI is high throughout the year, and another over an arid region,
where NDWI over the year is low. The disjoint time series for location (B) on image Figure 45 depicts issues
visible also in Figure 45 for summer months —some parts do not have enough valid observations over the time
period used to build the statistical baseline. We define for each pixel to have a valid observation if it has
Sentinel-2 L1C data (which is not true on border of orbits), and it is not cloudy, based on s2cloudless

algorithm?’ provided by Sentinel Hub®,

17 https://github.com/sentinel-hub/sentinel2-cloud-detector
18 https://docs.sentinel-hub.com/api/latest/user-guides/cloud-masks/
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Figure 45: Baseline statistics on a location with high (A) and low (B) NDW!I index values. Numbers specify number of
valid observations for that particular time interval.

3.3 NDWI anomaly
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Figure 46: Comparing new observations to historical baseline statistics.

The Figure 46 illustrates how historical baseline statistics can be used to monitor new observations. Each new

observation (in Figure 46, the online monitoring period has started in January 2023) can be compared to the

baseline — is the new observation within the standard deviation of the average value for that month, or it falls

outside the area?

NDWI anomalies are defined with the following approach:

NDWI anomaly

_ NDWI- NDWI
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Where NDWT is long-term (historical) mean value of if NDWI over particular period, and aypy; is its standard
deviation. The NDWI anomaly product is given in standard deviation units. It is commonly ranging from -4 to
+4, negative anomalies pointing to lower than expected values (e.g., draught) and positive to higher than
expected values (e.g., floods). An example where a Sentinel-2 observation is within the expected values is
shown in Figure 47, while Figure 48 shows some larger deviations, but still far from exceeding.
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Figure 47: NDWI data for 2023-04-09 is within the expected (one standard deviation) limits.
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Figure 48: Some bigger deviations observed on 2023-01-19.
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3.4 Running service

The main objective of this exercise was to set-up and run the continuous monitoring and demonstrate its

capabilities. In this section, we illustrate the main steps of the continuous monitoring performed with GEM

framework.

3.4.1 Define Aol

We need the area of interest, typically provided in geojson format. It serves as input to the next step. In our

example, we have opted for West Sahel region, shown in Figure 49, roughly 5.5Mio km?. As can be seen from

Code 1, the geojson with Aol is passed via the geometry_filename parameter. We also see that the configuration

specifies resolution to be 120m, and that the area will be split according to Sentinel Hub Batch API*®, using

tiling grid® with id 2.
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Figure 49: Aol used in the continuous monitoring example.

Code 1: eo-grow configuration for the area.

"area":
"manager": "eogrow.core.area.BatchAreaManager",
"geometry_filename": "aoi_region.geojson",
"tiling_grid_id": 2,
"resolution": 120

19 https://docs.sentinel-hub.com/api/latest/api/batch/
20 https://docs.sentinel-hub.com/api/latest/api/batch/#tiling-grids
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3.4.2 Obtaining data

For the Aol, we then obtain the input data — NDWI index from Sentinel-2 L1C data. For data retrieval, we make

use of Sentinel Hub Batch API, which is the main component of the datacube engine. We have used the

evalscript shown in Code 2 to obtain data for historical baseline statistics.

Code 2: Evalscript for creating datacube with NDWI index, filtering out non valid pixel observations.

/IVERSION=3

function setup() {
return {
input: ['B03", "B08", "CLM", "dataMask"],
output: [{ id: "NDWI", bands: 1, sampleType: "FLOAT32"}],
mosaicking: Mosaicking.ORBIT
3
}
function updateOutput(outputs, collection) {
Object.values(outputs).forEach((output) => {
output.bands = collection.scenes.length;

h;

function updateOutputMetadata(scenes, inputMetadata, outputMetadata) {
let timestamps =[]
scenes.forEach(scene => {
timestamps.push(scene.date);
)
outputMetadata.userData = {
timestamps: JSON.stringify(timestamps)
b
}

function is_bad(sample) {
return (('sample.dataMask) || sample.CLM)

}

function evaluatePixel(samples) {
var n_observations = samples.length;
let ndwi = new Array(n_observations).fill(0);

samples.forEach((sample, idx) => {
ndwi[idx] = is_bad(sample) ? -2 : index(sample.B03, sample.B08)
D&

return { NDWI: ndwi};
}
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The resulting datacubes were then converted to EOPatches. The grid of EOPatches can be seen in Figure 50.
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Figure 50: Grid of EOPatches over Aol.

Merging three temporary datacubes with a year worth of data each, we then ended up with EOPatches holding
NDWI values for each pixel for temporal interval from 2020-01-01 to 2022-12-31.

3.4.3 Calculating baseline statistics

We have put together an eo-grow pipeline to calculate baseline statistics. The execute method of the main
task of the pipeline is shown in Code 3, where NDW!I data from all years for each month is joined into mean
and standard deviation, and number of valid observations is counted.

After running this pipeline, EOPatches will contain information as seen in Figure 44.
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Code 3: EQOTask for calculation of baseline statistics.

class AnomalyBaselineTask(EOTask):

def execute(self, eopatch) -> EOPatch:

mean = []
std =]
count =[]

for month in range(1, 13):
month_idx = [idx for idx, ts in
enumerate(eopatch.timestamps) if ts.month == month]
masked_data = np.where(
eopatch[self.input_feature][month_idx, :] < -1,
np.nan,
eopatch[self.input_feature][month_idx, :]
)
mean.append(np.nanmean(masked_data, axis=0).squeeze())
std.append(np.nanstd(masked_data, axis=0).squeeze())
count.append(np.sum(~np.isnan(masked_data), axis=0).squeeze())

eopatch[self.mean_feature] = np.moveaxis(np.array(mean), 0, -1)
eopatch[self.std_feature] = np.moveaxis(np.array(std), 0, -1)

eopatch[self.counts_feature] = np.moveaxis(np.array(count), 0, -1)

return eopatch

3.4.4 Monitoring anomalies

From this point onward, the workflow follows the idea, outlined in the continuous monitoring example,
shown in eo-grow-examples repository at https://github.com/sentinel-hub/eo-grow-

examples/blob/main/GEM/docs/continuous monitoring.md:

o for each EOPatch cell update the local catalog of Sentinel-2 (from the last run until “now”, or from
start in case of the first run, using CatalogPipeline

e download the missing Sentinel-2 NDWI images - the newly available imagery since the last run of the
pipeline using IncrementalDownloadPipeline

e calculate anomalies as defined above with the CalculateAnomaliesPipeline. Additionally, as in the next steps
the calculated anomalies will be ingested back to Sentinel Hub, the anomalies are reformatted to
optimize storage. The main method to compute anomalies is shown in Code 4.

e Export anomalies to TIFF files with ExportMapsPipeline

e Ingest resulting TIFF files to a static Sentinel Hub datacube using BYOC API via the IngestByocTilesPipeline
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Code 4: Anomaly calculation part of the EOTask.

class AnomaliesTask(EOTask):

""Calculate anomaly index based on data, its historical mean and standard deviation

def execute(self, data_eopatch: EOPatch, reference: EOPatch) -> EOPatch:
anomalies =[]
for tid, ts in enumerate(data_eopatch.timestamps):
mean = reference[self.mean_feature][..., ts.month - 1]
std = reference[self.std_feature][..., ts.month - 1]
counts = reference[self.counts_feature][..., ts.month - 1]

data = data_eopatch[self.data_feature][tid, ..., 0]

# anomaly; set to -100 if not enough history or non valid data

anomaly = np.where((counts > self.min_valid_counts) & (data > -1),
(data - mean) / std,
-100)

# optimise storage - map to uint8

anomaly_uint = np.where(anomaly == -100, 0,

12*(11+np.clip(anomaly,-10,10)))
.astype(np.uint8)
anomalies.append(anomaly_uint)

data_eopatch[self.output_feature] = np.array(anomalies)[..., np.newaxis]

return data_eopatch

These pipelines can then be run at any cadence (e.g., daily), using a simple CRON job. For instance, the
following CRON schedule expression will execute a command every day at noon:

012***

The command would simply be:

eogrow end2end.json

or, if using a cluster:
eogrow-ray infrastructure.yaml end2end.json --start --tmux
The end2end.json configuration, holding all pipelines for continuous monitoring in one place, makes use of the

chaining pipelines capability of eo-grow:
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{"**catalog_update": "${config_path}/01_update_catalog.json"},
{"**incremental_download": "${config_path}/02_incremental_download.json"},
{"**calculate_anomalies": "${config_path}/03_anomalies.json"},
{"**export_to_tiff": "${config_path}/04_export_maps.json"},

{"*ingest_to_SH": "${config_path}/05_ingest_to_sentinelhub.json"}

Such monitoring has been run for the period 1.1.2023 — 8.31.2023 for the whole Sahel region. Most of this
period has been executed in a few runs, but we have tried and tested the script to verify it works when run
e.g., daily. The whole concept is agnostic to when the service is “re-run”; it will always pick up from the last
time it was executed, and process everything that was new, making it extremely versatile. Such incremental
updating is also resilient to data delivery interrupts, e.g., to delays in Sentinel-2 data delivery from ESA.

3.5 Results

The main objective of this exercise was to show the capabilities of the GEM tools for continuous monitoring.
The results of this particular exercise are not as outstanding as one would hope since the focus was on the
processing steps. As we can see from a mosaicks of anomalies for April and May in Figure 51 and Figure 52,
large trends of dry vs wet areas can still be seen. Comparing our results to similar but detailed research, at
such scales they are often done on significantly lower resolution (1km grid), but also use significantly longer
periods to construct historic baseline statistics. Indeed, the latter seems to be a big issue over the cloudy
equatorial and monsoon regions, where the number of valid observations per month interval was below a
defined minimal value min_valid_counts (we used 8 in our runs). Interestingly enough, in areas where Sentinel-
2 orbits overlap, we often got above this limit, hence the narrow southward pointing strips in Figure 51 and
Figure 52.
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Anomalies over April, 2023
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Figure 51: NDWI anomalies from observations in April 2023.

Anomalies over May, 2023
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Figure 52: NDWI anomalies from observations in May 2023.

Additionally, when looking at results at full resolution, it becomes transparent that cloud shadows pose an
issue —the NDWI calculation is returning significantly higher NDWI values over areas in cloud shadows, shown
in Figure 53.
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Figure 53: Effects of cloud shadows to anomaly detection. Top left: anomalies, top right: true color Sentinel-2 L1C
image, bottom: anomaly overlaid over true color.

Additional benefit of the GEM framework becomes clear when the results of the analysis are incorporated
back to Sentinel Hub. At that point, the full APl of Sentinel Hub can be used, and results easily visualized,
compared, re-used, etc. Figure 53 already showcases such integration: using EO-Browser, overlaying results
from anomaly detection with Sentinel-2 true color imagery is a matter of seconds.

The results, calculated NDWI anomalies for each Sentinel-2 observation over Aol, are available for access
through the GEM framework. The appropriate data cube / data collection to be used is:

ndwi_anomaly = DataCollection.define_byoc("37d1fa19-9aaf-49a4-98f9-20daf313040f"),

and a notebook illustrating how Figure 46 can be created is available on eo-learn-examples within GEM-data
and shown in Figure 54.

Notebook in eo-learn-examples?! contains examples for retrieval of whole time-series of anomalies, as well as
a mosaick shown in in Figure 51.

21 https://github.com/sentinel-hub/eo-learn-examples/blob/main/GEM-data/gem-NDWI-anomalies.ipynb
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from sentinelhub import SentinelHubRequest, BBox, CRS, DataCollection, MimeType

ndwi_anomaly_data_cube = DataCollection.define_byoc("37d1fal9-9aaf-49a4-98f9-20daf313040f")

i

viz_anomaly_evalscript = see

request = SentinelHubRequest (
evalscript = viz_anomaly_evalscript,
input_data=[SentinelHubRequest.input_data(
data_collection=ndwi_anomaly_data_cube,
time_interval=["2023-06-01","2023-06-30"]
)il
responses=[SentinelHubRequest.output_response("default", MimeType.PNG)],
bbox=BBox( (-17.569541605,4.231063941,16.251236737,23.712313469), CRS.WGS84),
size=(2000,1152)
)

fig, ax = plt.subplots(figsize=(10,8))
ax.imshow(image)
ax.set_title("Anomalies over April, 2023")

Text(0.5, 1.0, 'Anomalies over April, 2023')

Anomalies over April, 2023
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Figure 54: Retrieving anomaly results using Python in Jupyter notebook.

3.6 Summary

The main objective of the continuous monitoring service was to see how GEM framework can be employed

for continuous monitoring. We have focused on monitoring water over Sahel region, and first built a historical

baseline, and then run the algorithm to calculate anomalies in NDWI for each new Sentinel-2 observation

continuously. With the example shown in this section we believe the objective was reached, despite the

results, the NDWI anomalies, not being outstanding.

The approach using eo-grow is also very nimble: with simple tweaks to the pipelines, or even just configuration

files, other models could be used, and results monitored.
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Some examples:

e instead of simple baseline statistics, the parameters for modeling of seasonality of vegetation index
could be calculated from historical data, and then each new observation could be checked for large
deviances from predicted values. This way, eo-grow based BFAST?> monitor could be employed.

e NDWI based on near infrared and SWIR band, as proposed by Gao? could be used in the same
approach to monitor leaf (vegetation) water content at canopy level.

e Vegetation index could be used to find deforestation.

e Fancy deep-learning model could be used to predict something (e.g., deforestation), and ongoing
monitoring part could compare the last prediction to previous, looking for changes.

Additionally, other datasets could be used; as the service relies on eo-grow, tweaking the configuration for the
download pipeline would be sufficient to switch from Sentinel-2 to Sentinel-1 (e.g., to remove issues with

clouds) or use Harmonized LandSat Sentinel dataset (to obtain longer historical baseline).

22 Breaks For Additive Season and Trend, http://bfast.r-forge.r-project.org
2 Gao, B.-C. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sensing of Environment 58: 257-266.

82


http://bfast.r-forge.r-project.org/

Global Earth Monitor

4 Demonstration Applications

The following section shows the dedicated clients developed to visualize, compare, and validate results for
each GEM use case.

4.1 LC-CMS Application

To demonstrate the results of this use case over the pilot regions, two simple web-based Map Viewers have
been created: The first one is meant for internal use as it covers additional context and layers which are private
to TomTom. The second is shared with the GEM Consortium partners on the GEM website, to visualize the
pilot results for the LC-CMS use case. The app is currently available at:

http://globalearthmonitor.eu/sites/default/files/LC CMS/index.html

) OSM Layer

® EOX Clouctess 2021
) WortaCover 10m

[ Global LG 100m
J LEMS 120m* 7]
O Loms som*fen)
8 Lowms 20m 1)

[ Lows 1om*f4n

LC-CMS Predictions WorldCover 10m Global Land Cover 100m
9 Closses 11 classes 23 classes

Bare/ sparse vegetation

Snow and ice
Permanent water bodies
Herbaceous wetland

Mangroves

Moss and lichen

Figur 55. The public iewer (top) and internal viewer (bottom).
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Both viewers are continually evolving, with new layers and functionalities added. Figure 55 shows the internal

and the public viewers. While the both viewers share same functionalities, their main difference is the

underlying libraries e.g., the internal viewer uses MapLibre GL JS, while the public viewer uses open-source

Leaflet JS.

As seen in the Figure 55, there are multiple layers in the viewer which can be turned on and off using the

toggle button for each layer. The slider controls can be used to change the opacity of each layer which makes

it easier to compare results of different layers. In addition to that, the viewer also includes a Map Legend which

shows the colours used for different LC classes in each layer. Internal viewer also includes the TomTom’s Earth

Cover reference layer, which is not available on the public viewer due to licensing.

The viewer includes the layers shown in Table 4.1.

Table 4.1 Different layers used in LC-CMS Viewer

Layer Name

LC-CMS Prediction results at
120m, 60m & 20m

Layer Type

Prediction Results
Layer

Description

Results for predictions performed at 120m, 60m & 20m.

LCMS Pilot 120m 2019, LCMS
Pilot 120m 2020, LCMS Pilot
120m 2021

Prediction Results
Layers

Prediction results for the Pilot region performed by LC-CMS
pipeline using S2 at 120m for 2019, 2020 and 2021.

LCMS 2019-2020,
LCMS Change 2020-2021,
LCMS Change 2019-2021

Change

Change Detection

Results layer

Change detection by comparing predictions performed by LC-
CMS pipeline using S2 at 120m for 2019, 2020 and 2021, over the

years.

TomTom Base Map

Reference Layer

TomTom base map raster layer.

OSM Layer

Reference Layer

OSM (Open Steet Map) raster base map layer.

Cloudless Satellite Imagery

Reference Layer

Pre-processed Cloudless Viewing Ready (RGB) global product
created from Sentinel-2 mission for years 2019, 2020, 2021.

World Cover 10m

Validation Layer

The European Space Agency (ESA)’'s World Cover maps which is
global land cover map with 11 different land cover classes
produced at 10m resolution based on combination of both
Sentinel-1 and Sentinel-2 data.

Global-LC 100m

Validation Layer

100m LC product delivered by Copernicus for years 2015-2019.
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4.2 Map Making Application
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Figure 56 Map Making results viewer.

Like LC-CMS viewer, we created a dedicated viewer for visualising the results for Map Making use case. The

viewer is available at http://globalearthmonitor.eu/sites/default/files/water/index.html.

Table 4.2 shows the list of the layers used for demonstrating the results of Map Making use case. Figure 56

shows the viewer with following features:

e Vector layers are displayed on the top right row of the viewers and can be displayed using the

toggle buttons.

e Raster layers can be displayed selecting the checkbox with the layer name.

e Reference layers can also be changed using the radio buttons with layer name. Opacity of the

selected layer can be changed with slider associated with the layer name.

Table 4.2 List of layers for demonstrating the results of Map Making use case.

Layer Name Layer Type Description

WaPr 60, | Prediction Results | Prediction results for the Myanmar experiment region
WaPr 20m, | Layers performed by Water Predictor pipeline using S2 at 120m, 20m
WaPr 10m and 10m resolution for the year 2020

MapReady Water Vectors Vector Layer This layer shows a sample of map-ready vectorized results

Results

generated using the Map Making pipeline for a small region of
Chile. Data for whole of Chile has been ingested into TT map
and this is a subset of the ingested data.
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TT Water Before

WaPr 10m FED

WaPr 10m CNN

WaPr Change 2019-2022

GSW*

TomTom Base Map

OSM Layer

Cloudless Satellite Imagery

Reference Layer

Prediction Results
Layers
Prediction Results
Layers

Change Detection

Results layer

Validation Layer

Reference Layer

Reference Layer

Reference Layer
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Reference Layer which shows the situation of TT map in the
demo region of Chile. This data has now been replaced in TT

map with new ingested data from Map Making pipeline.

Prediction results for the Myanmar and Chile demonstration
region performed by Water Predictor pipeline feature
engineering on 10m resolution for the year 2020 (Myanmar)
and 2021 (Chile)

Prediction results for the Myanmar and Chile demonstration
region performed by Gap Filling CNN Segmentation model
defined in D5.4 in section 4.3 on 10m resolution for the year
2020 (Myanmar) and 2021 (Chile)

Change detection by comparing predictions performed by LC-
CMS pipeline using S2 at 120m for 2019 and 2022 for drying
lakes in Iran and Iraq.

GSW Layers form the open sourced Global Surface Water

Explorer (global-surface-water.appspot.com)

TomTom base map raster layer.
OSM (Open Steet Map) raster base map layer.

Pre-processed Cloudless Viewing Ready (RGB) global product
created from Sentinel-2 mission for years 2019, 2020, 2021.
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4.3 Built-Up Application

LGBM regression 120m

TFCN regression 120m
Built-up 10m - Random samples
Built-up 10m - Eritrea

Built-up 10m - South Sudan

GEM Africa Built-up Demonstrator

Demonstrator application showcasing the results of the Deliverable D5.2: Built-up
area use-case.
NOTE: the built-up 10m layers are visible only at zoom level 14 and 15.

Figure 57: Screenshot of the Built-up demonstrator app.
Demonstrator of the Built-up use case results obtained over Africa is currently available at:

https://www.globalearthmonitor.eu/sites/default/files/D5.2 demo.html

The demo presents results of two research modalities:

Data and results obtained at 120 m resolution, showing Sentinel-2 120 m global mosaic as backdrop, and
results of two best performing ML models as different layers for the user to visualize:

e LightGBM regression model, presented in section 2.3.5.1

e Temporal Fully Connected Network with regression output, presented in section 2.3.5.2.
Results obtained at 10 m resolution is shown for:

e areas from different biomes across whole Africa

e South Sudan

e Eritrea

The results at 10 m resolution use Sentinel-2 Level2A data at 10 m as backdrop, and the polygons are results
of predicting bounding boxes of buildings using Sentinel-2 data, described in section 2.3.6.

All the raster data in the demonstrator is being retrieved from Sentinel Hub services, where the results are
ingested as BYOC (Bring Your Own Cloud-optimised GeoTIFF) data.
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4.4 Crop |dentification Application

The demonstrator for the Crop Identification use case is a simple web application?* that allows users to inspect
the results of crop identification experiments. It is configured to show the most accurate results we obtained,
i.e. by training with Slovenia 2019 crop data.

The demonstrator allows users to zoom and pan a map to a region of interest. They can then click on individual
fields to inspect classification results (Figure 58).
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Figure 58: Crop identification results map. Crop types are colour coded; clicking on a crop shows crop identification
results including the probability of the crop being identified correctly. Pasture/meadow can be identified with high
probabilities (left); identification of other crops may be not as reliable (right).

For each field, the application provides the following information:
e Polygonid
e Probability with which the crop was predicted
e Predicted crop id
e Predicted crop name
e Target crop id (from crop database)

This demonstrator is freely accessible for review and will be hosted on the GEM website.

4.5 Temperature Downscaling

meteoblue has matured the demonstrator for temperature downscaling for built-up areas to TRL 9 and
displays live heat maps in of selected cities® in 10 m resolution for free on the meteoblue web site. Ljubljana
is shown as an example. The colour scale is chosen to amplify differences — at different times of day a particular
hue may refer to different temperatures.

24 https://www.globalearthmonitor.eu/sites/default/files/crop identification/index.htmI|#14.62/45.9582/14.35993
2 https://www.meteoblue.com/cityclimate
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Figure 60: Hyper-resolution (10 m) temperature map of Budapest on September 6, 2023, at 04:00h . The temperature
spread at that time was 14 °C (blueish) to 19 °C (dark brown).

4.6 Compute climate variables on grids

meteoblue operates a self-service portal® for simulated historic weather data access that also supports server
side computation. This allows users to obtain climate data as derived variables directly in the portal. For GEM,
meteoblue created and documented example Python scripts?’.

This demonstrator is freely accessible.

26 link to self service portal
27 https://github.com/sentinel-hub/eo-learn-examples/tree/main/climatological days
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4.7 Measurements interface

The user interface for the meteoblue Measurements AP| has been reported in D2.4 and is repeated here for
completeness. For easy access to measurement data meteoblue provides a web interface?® (Figure 61) that
allows users to easily access measurements and lets them find and select stations by selecting criteria in the
web interface. Users can:

- have an overview over available stations;
- select stations within a specific geographic area represented by polygons;

- select stations with a minimum hourly coverage of a specific weather variable during a specified time
interval;

- select download formats and download the data.

3
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Figure 61: meteoblue measurements interface: overview (top), political area selection (bottom left), and provider
selection (bottom right) screens.

28 hitps://measurements.meteoblue.io/measurements-ui/#/map?providers=synop,metar
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This user interface does not yet support selective data access based on user credentials. It is therefore only
suitable for internal use by meteoblue employees or external use by customers with a special contract.

4.8 Conflict Pre-Warning Application

4.8.1 Conflict dashboard

As described in D5.5, different datasets have been integrated in a dashboard for visualization, aggregation and
analytics. In particular, conflict data has been consumed through the API services provided by the ACLED
project and ingested into an ElasticSearch cluster. In this way, GEOINT analysts can perform queries, faceting
by different topics and aggregations on an ad-hoc basis, accordingly to the specific GEOINT analyst needs. On
top of the Elasticsearch cluster, a Kibana dashboard has been created to facilitate the use and provide self-
analytics capabilities. This data is an essential part for the analyses in the CPW use case, as it has been
thoroughly used for the validation of the products and services generated through the exploitation of EO,
meteorological and collateral datasets.

The dashboard is interactive, meaning that it is able to dynamically adapt to the queries posed by the analyst
and showcase the different facets and aggregations allowing to understand different situations, from wide
temporal extensions and global scenarios to very localized issues in time and geospatial location.

ACTED Daskboard

317 4 11 . ;f\ “. \ "‘I‘\\'\-“f\\‘. ;’\\ - f \/f\,.\//\_/\ /_f~ /\7-\.\
m"[‘ ! i /”\./f\_) '\\/“/ \\ / “"./"‘ \w‘.“ -\_f N \ /

Aggregationa By Countey s = —— == =

12345 n>
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Figure 62: CPW Dashboard

The system allows filtering data by different constraints, including country, region, event types or subtypes,
number of fatalities between specific range, and even free text search on the description of the event.

The interface automatically presents the timeline and facts such as the top countries involved or top actors
involved because of certain query.

It also provides a map view that seamlessly allows drilling down into details providing an aggregated value
taking into consideration the level of zoom. At high levels of zoom, the data is aggregated at the country scale.
Once the user zooms in, the data is disaggregated into a cluster grid. On further zoom, the individual events
are showcased, with the colour representing the type of event and the size representing the number (or
estimate) of fatalities related to that event.

Different layers have been included to enable the analysis of conflicts with other datasets. The data is also
exportable to geospatial formats (e.g., geojson) for integration in traditional GIS software (QGIS, ArcGIS).
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Figure 63: Cross-scale analysis for conflict data

Additional derived layers are also available for visualization in the platform, such as water body transitions

(See Figure 64 ) and Land Cover maps/changes (see Figure 65).
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Figure 64: Visualization of water body transitions and conflict events around Lake Chad Basin for a specific period of
time
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Figure 65: Land Cover Map visualized in the prototype interface

A self-service analytics module is also available, allowing users to interact with the data in a way that they can
generate new views that can then be used on their own or further integrated in the dashboard. By simple drag
& drop (see Figure 66) new visualizations can be created. Panel (1) allows for filtering/slicing the data. Panel
(2) allows users to define the metrics (accumulated —sum - number of fatalities in the example) and facets (by
time in the example). Panel (3) allows for visualization of the data, in the form of a line chart in the example.
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Figure 66: Self-service analytics interface

4.8.2 Jupyter notebooks

For expert users, the data is also offered to be consumed using standard programming interfaces. SatCen has
also deployed a Jupyter Lab instance so that users can access the data programmatically and create their own
visualizations. An example can be found in Figure 67 for visualizing the evolution of the average NDVI over a

specific area, using Sentinel-2 and GEM capabilities.
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~ Jupyterhub StatAPI_NDVI_agg Last Checkpoint 0910672023 (autosaved) @ Logaut | Contol Panel
Fle Edt View Inset Cell Kemel  Widgets  Help Python3 O
B+ 5 @ B+ ¥ PR B C M Coe v @

| ndviiﬁoisamp]s(ount 152

ndvi_Be_noDataCount : 52
interval_from : 52

interval _to : 52

ndvi_Be_min : 52

ndvi_Be_max : 52

ndvi_Be_mean : 52

ndvi_Be_stDev : 52

ndvi_Be_sampleCount : 52

ndvi_B@_noDataCount : 52

interval_from : 52

interval_to : 52

ndvi_Be_min : 52 -

Visualizations

Map through the months

In [61]: import matplotlib.dates as mdates
fig, ax = plt.subplots(figsize=(12,5))
for i,d in enumerate(data):

d[ 'ndvi_Ba_mean'] = d[ 'ndvi_Be_mean'].astype(float)
d['day_of_year'] = d['interval_from'].apply(lambda x: x.strftime('%-d-%b'))

drl

#ax.xaxis.set_ma
ax.legend()
# Add gridlines

ax.grid(True, linestyle='--', linewidth=0.5, alpha=0.7)
plt.title('Mean NDVI in the area per year')
Mean NDVI in the area per year
o 2020
021
0351 — 2022 A | f
— 2023 | , TR
03 i FAN A

Ljan 12-Mar 21 May
day_of year

Figure 67: Example of custom code to visualize the evolution of the average NDVI from Sentinel-2 in a specific area

4.9 City Heat Map Application

Cities are known to be "hotter" than the surrounding countryside, and this effect is increased by climate
change. It affects more than 50% of the human population - worldwide.

meteoblue demonstrates hyper-resolution (10m) temperature fields as city heatmaps on its website, e.g., at
https://www.meteoblue.com/en/products/cityclimate/heatmaps/basel. A screen shot is shown in Figure 68.

A time slider allows to inspect different times of day. Notice that high temperature spreads are typically
observed in the late morning (caused by differential heating of different surfaces by the sun) and mid-evening
(due different cooling of different surfaces once the sunlight is gone).
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Figure 68: Real-time city heat map for Basel. Its two major railway stations are easily identified in the centre image.
The colour scale is optimised for the temperature spread. Users have to check the colour bar to see the actual
temperature values.

This new meteoblue website feature shows the current temperatures in 10x10 meters resolution including a
3-day history for over 70 selected cities and their surrounding areas. The city climate overview map?® shows
all cities for which heat maps are available. Click one of the orange dots to view the corresponding city’s hyper-
local temperature weather map. The underlying data show local temperature patterns within a city such as
heat islands or cool spots. Temperature differences of up to 10°C within only a few meters are possible during
extremely hot days, calm weather, and nights.

Besides helping citizens in their daily life during heat or cold waves to find the most comfortable spots, our
heat maps also create awareness for the well-explored urban heat island effect. The heat maps can help city
administrations to identify and localise heat islands and subsequently plan climate-friendly adaption measures.

2 https://www.meteoblue.com/en/products/cityclimate/index
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5 Public Collections

Majority of datasets that have are available (or were made available) to the GEM consortium or publicly are
presented in D2.2 — Data Management Plan. The datasets, representing results from the demonstration
activities, are presented here to be concise. For many of them, the examples notebooks at
https://github.com/sentinel-hub/eo-learn-examples/blob/main/GEM-data/introduction.ipynb showcase how

the data can be used within GEM framework.
Table 5.1 lists the Sentinel Hub collections with results from the Built-up use-case.

Table 5.1 Sentinel Hub collections for the demonstration and experiments from Built-up use-case

Region Resolution SH Collection Id

Sentinel-2  L2A  120m | worldwide 120m 484d8dbb-9e3e-41f2-b96b-35189d3ae37f All Sentinel-2
Mosaic3° bands
Rasterised "Open | Africa 120m 6701abce-6aff-448a-b149-ab285620f135 google
buildings" dataset by

Google

LightGBM  regression | Africa 120m 6701abce-6aff-448a-b149-ab285620f135 lgbm_rmse

built-up model

LightGBM  categorical | Africa 120m 6701abce-6aff-448a-b149-ab285620f135 lgbm_cat
built-up model

TFCN  regression and | Africa 120m 6701abce-6aff-448a-b149-ab285620f135 tfen_r,
classification built-up tfen_re,
models tfcn_2out_r

Table 4.1 and 4.2 lists all the Sentinel Hub collections which contain the results and predictions for the LC-CMS
and Map Making use case respectively.

Table 5.2 Sentinel Hub collections for the demonstration and experiments predictions for LC-CMS pipeline

Resolution SH Collection Id Raster
Band
LC-CMS Predictions France AOI 120m 59b4de97-ad51-47b0-80f6-c6c47faelca7 B1
LC-CMS Predictions France AOI | 60m 84f1e9db-4abe-4ddf-8d00-17b2783531c4 B1
LC-CMS Predictions France AO| 20m 5¢21b111-07d2-43a3-95ad-46381c6e199a B1
LC-CMS  Predictions | Africa AOI 120m d90fecad-b21b-4780-b0c5-20dc2d1017d4 Y2019
2019

30 https://collections.sentinel-hub.com/sentinel-s2-12a-mosaic-120/
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LC-CMS Predictions | Africa AOI 120m d90fec4d-b21b-4780-b0c5-20dc2d1017d4 Y2020
2020
LC-CMS Predictions | Africa AOI 120m d90fec4d-b21b-4780-b0c5-20dc2d1017d4 Y2021
2021

Table 5.3 Sentinel Hub Collections for demonstration and experiments predictions for Map Making use case

Region Resolution SH Collection Id

Water Demo  AOlIs | All AOIs | 10m £234133c-d198-4569-a14f-612d692f2030 PRED
Prediction 2019 mentioned

in table 2.4
Probabilities for PW | Chile AQI 10m 6da384a4-1eal-40a6-b855-0b4ad954671f PW
2019
Probabilities for IW | Chile AQI 10m 6da384a4-1eal-40a6-b855-0b4ad954671f W
2019
Water CNN Gap Filling | Chile AOI 10m b31d5¢95-ddb6-440f-b732-5827f5f64fb7 PRED
Predictions
Water  Experiments | Myanmar 10m 742682e8-ab52-46b6-bfa8-6fc068ch60ct PRED
Predictions 2020 AOI

Table 5.4 shows the collection holding the NDWI anomalies data, results of the continuous monitoring service,
described in Section 3.

Table 5.4 Sentinel Hub Collections holding results from continuous monitoring service

Region Resolution SH Collection Id Raster
Band
NDWI anomalies Sahel  AOI, | 120m 37d1fa19-9aaf-49a4-98f9-20daf313040f anomaly
shown in
Figure 49

Vectorized Results of Map Making for Demo Regions

The vectorized map-ready results generated using the Map Making pipeline for all the demo regions are
available for download via GEM web page.

There are results for 5 regions mentioned in table 2.4. As mentioned earlier, the results of South Korea cannot
be shared because of contractual obligations of TomTom:

e https://globalearthmonitor.eu/sites/default/files/map making data/Albania AOl.gpkg
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e https://globalearthmonitor.eu/sites/default/files/map making data/Chile AOl.gpkg

e https://globalearthmonitor.eu/sites/default/files/map making data/Taiwan AOl.gpkg

e https://globalearthmonitor.eu/sites/default/files/map making data/Turkey AOl.gpkg

e https://globalearthmonitor.eu/sites/default/files/map making data/Uruguay AOl.gpkg

Each GPKG file contains the vector results of an AOI and contains three layers, as shown for Albania AOI in
Figure 69:

1. WAs: Water Areas
2. WLs: Water Lines

3. Islands: Islands

T 4 oy Gora” Prishiting

a.G
UpHalopa

Podgorica

~ v il Albania_AOIl Cutinne
Islands kA
WAs

WLs B
v V == OSM Standard

Cronje

g

Figure 69: Vector results for Albania AOI shown in QGIS.

A sample (within Chile) of the shared results is shown on the Map Making map viewer application (section 3.2)
as a vector layer which can be visualized by clicking on ‘MapReady Water Vectors’ button on the viewer. A
reference layer for the same region is also provided which contains the situation of water bodies before they
were updated by GEM Map Making pipeline.

The example result of crop identification is available for inspection via a simple web application on the GEM
website (Section 4.4). Hyper-resolution temperature maps for selected cities are available on the meteoblue
website (Section 4.5).
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6 Conclusion

As a part of LC-CMS use case we built an E2E LC-CMS pipeline using the GEM processing framework, and
existing know-how. We worked in close collaboration with Sinergise who developed the GEM processing
framework, on which LC-CMS is based. TUM also provided feedback for ML solutions implementation.

The Sahara region of Africa was chosen for the demonstration. To demonstrate Continuous Monitoring of the
LC-CMS pipeline, continuous predictions are generated over 3 years from 2019 to 2021 using Sentinel-2 120m
resolution data aggregated every 2 months. The public demonstration app described in D5.3 section 2 is used
to visualize demonstration region results.

As a part of LC-CMS we also looked at various approaches for Change Detection (CD) and demonstrated the
result of change detection using prediction delta. For CD using prediction delta, the CD pipeline was run, and
results are shown for the same Africa AOI continuously for years 2019 through 2021 at 120m resolution. We
found that CD using prediction delta worked very well for most LC classes in geographically diverse regions.
Therefore, we later adapted and created a pipeline of its own as part of the Map Making use case.

We believe that the LC-CMS use case helps demonstrate that it is possible to continually run models at low
resolution at global scale in a repeated manner and at low costs, making cost-effective continuous monitoring
a reality. Additionally, it helped steer future efforts on other use-cases in the right direction.

For the Map Making use case, we focused on water features. The objective was to automate the detection of
map-ready LC features and ingest them into the map. These features can then be used in TomTom's core map
for land cover display and navigation purposes.

As part of the Map Making use case, we conducted two parallel work streams, resulting in two types of
demonstrations.

First, we applied the learnings from the LC-CMS use case and fine-tuned our techniques to predict water
bodies from sensor data. This involved band selection, model selection, gap filling for narrow water bodies and
change detection at scale. The experiments were carried out in Myanmar to fine tune the pipeline for water
prediction. For demonstration purposes, we chose six additional country sized AQOIls as mentioned in table 2.4.
The results were predicted for 2019 at 10m resolution. For change detection we used the Iraq & Syria region
where changes were detected for drying lakes from 2019 to 2022 using the CD pipeline, drilled down from
120m to 10m. Roughly 85% of predictions at 10m were reused from 2019, with just an additional cost of
processing lower 120m resolution data for huge region. This results in a huge input data cost and operational
cost saving. The generated water predictions for all the AOI regions mentioned in table 2.4 are shared in the
Map Making viewer application.

Second, we established a map making process where these detected water bodies are ingested into the map.
We vectorized, smoothed and post-processed the water bodies generated by our Water prediction pipeline
using the FME workbenches defined for Map Making. We then ingested the whole of the Chile region into
TomTom maps using the TomTom ingestion process explained in D5.4 Map Making use case. The results of all
the AOIs except South Korea have been shared as GeoPackage files which contain the vectorized, smoothed
and map-ready vector features. Due to security concerns results for South Korea cannot be shared.
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The Map Making viewer also shows a part of Chile which shows on the TomTom map before and after the
water features generated from the Map Making pipeline were ingested into the TomTom maps. Map Making
viewer is available to the public, therefore whole region is not shown.

D5.8 Validation report discusses the realized benefits of Map Making and LC-CMS.

The research and results of the Built-up area use-case within the GEM project have been concisely presented.
The work in the use-case involved integrating existing (machine learning, EO data and processing) knowledge
with the GEM platform (eo-learn and eo-grow) to establish a process for identifying new urban areas on a
large scale. A 120 m resolution global cloudless mosaic Analysis Ready Data cube was created to support cost-
effective monitoring. The process for detecting large built-up areas was developed, allowing for the
identification of individual buildings by increasing the resolution progressively. Ground truth data from
TomTom and expertise from TomTom and TUM were essential.

The Built-up use-case was the first in the series of GEM use-cases, and is considered foundational within the
GEM project, as the scalable and cost-efficient approaches developed and used within were later applied also
in other use-cases (e.g., LC-CMS, Map Making and Conflict Pre-Warning use-cases), and also in continuous

monitoring.

Service for running large-scale, cost-effective, and Continuous Monitoring has also been presented in this
deliverable. The Continuous Monitoring service aimed to explore the utilization of the GEM framework for
ongoing monitoring, with a specific focus on water monitoring in the Sahel region. This involved establishing a
historical baseline and continuously assessing NDWI anomalies using the Sentinel-2 observations. While the
achieved results in NDWI anomalies were not exceptional, we consider the primary objective to be met. One
notable aspect of the results is the flexibility of the approach facilitated by eo-grow, allowing for easy
adjustments to pipelines or configuration files to incorporate different models and monitor different things.
Furthermore, the service's adaptability extends to the use of various datasets, where modifying the download
pipeline configuration could facilitate straightforward transitions to other sources like Sentinel-1 or
Harmonized LandSat Sentinel for an extended historical perspective.

Finally, the approaches, algorithms, and tools, developed to support Built-up and other use-cases are already
proving highly valuable within Sinergise. The eo-grow pipelines we have developed for the Built-up use-case
are now a used daily in both our research and production work, further showing that the technology readiness
level of the GEM framework is very high.

Despite somewhat modest results of the Built-up use-case, they nevertheless show that low-resolution scan
already provides value, and are driving the cost-efficient drill-down approach. Using this “continuous scan
mode” at low resolution, one can switch to “spot mode”, employing the higher resolution data. Finally, the
single ease-to-use gateway for accessing all kinds of data (from open data like Sentinels and LandSat to very-
high-resolution data from Maxar, Airbus and Planet) with Sentinel Hub unified API, brings significant advantage
to the GEM framework.

The Crop Identification use case demonstrator was only developed to an early stage as we could not improve
crop identification accuracy with weather data. The temperature downscaling demonstrator was developed
to product maturity in form of live hyper-resolution (10 m) city temperature maps on the meteoblue website.
Computing climate variables on grids simplifies the generation of training data sets, as does the computation
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of gridded climate indices and other derived variables. The measurements data interface allows meteoblue
to manage measurement data rather than just ingesting them from 3rd parties and to internally streamline
operations. This opens new possibilities such as quality assurance as a service.

A number of demonstrators are available to try out working with climate data. Depending on the maturity of
the underpinning technology, they are available at different technology readiness levels (TRLs). The mature
demonstrators can be used for actual work.

Regarding the Conflict Pre-Warning use case, as discussed through the deliverable, the datasets, processing
framework and services developed through the GEM project are of added-value for the understanding
Climate-Security issues. In particular, the cost optimized continuous monitoring has the potential to enable
anticipating changes that may lead into risks for local populations. Beyond that, ad-hoc processing services
also have the potential to improve existing procedures, especially in terms of data integration and fusion,
such as providing situational awareness information or producing detailed analyses. These aspects have
been demonstrated through the CPW use case presented in this deliverable. The CPW use case represents
the first ambitious step into the setup of products and services supporting further understanding of Climate-

Security issues at SatCen.
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